Experimental and Theoretical Investigation of Inclusion Complexes of β-Cyclodextrin with Fingolimod
- Authors: Garibyan A.A.1, Delyagina E.S.1,2, Antipova M.L.1, Odintsova E.G.1, Petrenko V.E.1, Terekhova I.V.1
-
Affiliations:
- G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
- Ivanovo State University
- Issue: Vol 97, No 3 (2023)
- Pages: 378-385
- Section: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- Submitted: 27.02.2025
- Published: 01.03.2023
- URL: https://innoscience.ru/0044-4537/article/view/668797
- DOI: https://doi.org/10.31857/S0044453723030135
- EDN: https://elibrary.ru/DXRADY
- ID: 668797
Cite item
Abstract
The solubilizing effect of β-cyclodextrin on fingolimod, a new generation immunosuppressant, is studied for the first time. A possible 20× increase in the solubility of fingolimod due to the penetration of the hydrophobic fragment of the drug molecule into the macrocyclic cavity of the cyclodextrin is shown. Data driven 1H NMR spectroscopy and computer modeling suggest the configuration of the resulting inclusion complexes. The constant of the complex’s stability and its energy of complexation are calculated, and the formation of hydrogen bonds between fingolimod and β-cyclodextrin is considered.
Keywords
About the authors
A. A. Garibyan
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
Email: ivt@isc-ras.ru
153025, Ivanovo, Russia
E. S. Delyagina
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences; Ivanovo State University
Email: ivt@isc-ras.ru
153045, Ivanovo, Russia; 153025, Ivanovo, Russia
M. L. Antipova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
Email: ivt@isc-ras.ru
153025, Ivanovo, Russia
E. G. Odintsova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
Email: ivt@isc-ras.ru
153025, Ivanovo, Russia
V. E. Petrenko
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
Email: ivt@isc-ras.ru
153045, Ivanovo, Russia
I. V. Terekhova
G.A. Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences
Author for correspondence.
Email: ivt@isc-ras.ru
153025, Ivanovo, Russia
References
- Salem H., Abo Elsoud F.A., Heshmat D. // Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2021. V. 250. P. 119331. https://doi.org/10.1016/j.saa.2020.119331
- Jaafar N., Zeineddine M., Massouh J. et al. // Mult. Scler. Relat. 2019. V. 36. P. 101437. https://doi.org/10.1016/j.msard.2019.101437
- Strader C.R., Pearce C.J., Orberlies N.H. // J. Nat. Prod. 2011. V. 74. № 4. P. 900. https:// doi.org/https://doi.org/10.1021/np2000528
- Al-Izki S., Pryce G., Jackson S.J. et al. // Mult. Scler. J. 2011. V. 17. № 8. P. 939. https://doi.org/10.1177/1352458511400476
- Pelletier D., Hafler M.D., Hafler D.A. // N. Engl. J. Med. 2012. V. 366. P. 339. https://doi.org/10.1056/NEJMct1101691
- Aytan N., Choi J.-K., Carreras I. // Sci. Rep. 2016. V. 6. № 1. P. 24939. https://doi.org/10.1038/srep24939
- Nasser A. // J. Basic. Clin. Physiol. Pharmacol. 2019. V. 30. № 5. P. 31469655. https://doi.org/10.1515/jbcpp-2019-0063
- Medeiros da Silva M., Odebrecht de Souza R., Gonçalves M.V.M. // J. Neuroimmunol. 2022. V. 2. P. 100071. https://doi.org/10.1016/j.nerep.2022.100071
- Gomez-Mayordomo V., Montero-Escribano P., Matías-Guiu J.A. et al. // J. Med. Virol. 2020. V. 93. № 1. P. 546. https://doi.org/10.1002/jmv.26279
- Mona J., Kuo C.-J., Perevedentseva E. et al. // Diam. Relat. Mater. 2013. V. 39. P. 73. https://doi.org/10.1016/j.diamond.2013.08.001
- Center for drug Evaluation and Research. 2010. https://www.accessdata.fda.gov/drugsatfda_docs/nda/ 2010/022527orig1s000clinpharmr.pdf
- Tamakuwala M., Stagni G. // AAPS Pharm. Sci. Tech. 2016. V. 17. P. 907. https://doi.org/10.1208/s12249-015-0415-9
- Ward M.D., Jones D.E., Goldman M.D. // Expert Opin. Drug Saf. 2014. V. 13. P. 989. https://doi.org/10.1517/14740338.2014.920820
- Miranda R.R., Ferreira N.N., de Souza E.E. et al. // ACS Appl. Bio Mater. 2022. V. 5. P. 3371. https://doi.org/10.1021/acsabm.2c00349
- Zeraatpisheh Z., Mirzaei E., Nami M. et al. // Eur. J. Neurosci. 2021. V. 54. № 4. P. 5620. https://doi.org/10.1111/ejn.15391
- Shirmard L.R., Ghofrani M., Javan N.B. et al. // Drug Dev. Ind. Pharm. 2020. V. 46. № 2. P. 318. https://doi.org/10.1080/03639045.2020.1721524
- Shahsavari S., Shirmard L.R., Amini M. et al. // J. Pharm. Sci. 2016. V. 106. P. 176. https://doi.org/10.1016/j.xphs.2016.07.026
- Javan N.B., Shirmard L.R., Omid N.J. et al. // J. Microencapsul. 2016. V. 33. № 5. P. 1. https://doi.org/10.3109/10837450.2015.1108982
- Zou X., Jiang Z., Li L. et al. // Artif. Cells Nanomed. Biotechnol. 2021. V. 49. № 1. P. 83. https://doi.org/10.1080/21691401.2021.1871620
- Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. № 5. P. 201. https://doi.org/10.1002/ddr.21452
- Terekhova I., Kritskiy I., Agafonov M. et al. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 9102. https://doi.org/10.3390/ijms21239102
- Garibyan A., Delyagina E., Agafonov M. et al. // J. Mol. Liq. 2022. V. 360 P. 119548. https://doi.org/10.1016/j.molliq.2022.119548
- Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
- dos Passos Menezes P., de Araújo Andrade T., Frank L.A. et al. // Int. J. Pharm. 2019. V. 559. P. 312. https://doi.org/10.1016/j.ijpharm.2019.01.041
- Job P. // Annual Chemistry. 1928. V. 9. P. 113.
- Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098. https://doi.org/10.1103/PhysRevA.38.3098
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Frisch M.J., Trucks G.W., Schlegel H.B. et al.// Wallingford, CT, USA, 2016
- Morris G.M., Huey R., Lindstrom W. et al. // J. Comp. Chem. 2009. V. 16. P. 2785. https://doi.org/10.1002/jcc.21256
- GROMACS 2019.6. https://manual.gromacs.org/documentation/2019.6.
- Nose S. // Mol. Phys. 1984. V. 52. P. 255. https://doi.org/10.1080/00268978400101201
- Hoover W.G. // Phys. Rev. A. 1985. V. 31. P. 1695. https://doi.org/10.1103/PhysRevA.31.1695
- Allen M.P., Tildesley D.J. // Computer Simulation of Liquids, Clarendon Press, London, 1987.
- Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
- Essmann M.U., Perera L., Berkowitz M.L. et al. // J. Chem. Phys. 1995. V. 103. P. 8577. https://doi.org/10.1063/1.470117
- Hess M.B., Bekker H., Berendsen H.J.C. et al. // J. Comput. 1997. V. 18. № 12. P. 1463. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
- Jorgensen W.L., Tirado-Rives J. // PNAS. 2005. V. 102. P. 6665. https://doi.org/10.1073/pnas.0408037102
- Dodda L.S., Vilseck J.Z., Tirado-Rives J. et al. // J. Phys. Chem. B. 2017. V. 121. P. 3864. https://doi.org/10.1021/acs.jpcb.7b00272
- Dodda L.S., de Vaca I.C., Tirado-Rives J. et al. // Nucleic Acids Res. 2017. V. 45. Web Server issue W331. https://doi.org/10.1093/nar/gkx312
- Jorgensen W.L., Maxwell D.S., Tirado-Rives J. // J. Am. Chem. Soc. 1996. V. 118. P. 11225. https://doi.org/10.1021/ja9621760
- Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. V. 14. P. 33. https://doi.org/10.1016/0263-7855(96)00018-5
- Higuchi T., Connors K. // Adv. Anal. Chem. Instrum. 1964. V. 4. P. 117.
- Saokham P., Muankaew C., Jansook P. et al. // Molecules. 2018. V. 23. № 5. P. 1161. https://doi.org/10.3390/molecules23051161
- Prajapati M., Loftsson T. // J. Drug Deliv. Sci. Technol. 2022. V. 69. P. 103106. https://doi.org/10.1016/j.jddst.2022.103106
- Szejtli J. // Chem. Rev. 1998. V. 98. P. 1743. https://doi.org/10.1021/cr970022c
- Jacob S., Nair A.B. // Drug Dev. Res. 2018. V. 79. P. 201. https://doi.org/10.1002/ddr.21452
Supplementary files
