Сравнение механизмов гидролиза органофосфатов с хорошей и плохой уходящей группой фосфотриэстеразой из Pseudomonas Diminuta

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Комбинированным методом квантовой механики и молекулярной механики определены механизмы гидролиза органофосфатов в активном центре фосфотриэстеразы Pseudomonas diminuta. Показано, что для субстрата с хорошей уходящей группой реакция проходит через две элементарные стадии с низкими энергетическими барьерами, при этом наблюдается выигрыш в энергии. В случае плохой уходящей группы возможно только образование нестабильного интермедиата реакции, однако полного гидролиза не происходит. Сравнение полученных механизмов реакции объясняет экспериментальные кинетические данные, согласно которым фермент гидролизует только субстраты с хорошими уходящими группами.

Texto integral

Acesso é fechado

Sobre autores

Т. Мулашкина

Московский государственный университет имени М.В. Ломоносова

Email: mkhrenova@lcc.chem.msu.ru
Rússia, Москва

А. Кулакова

Московский государственный университет имени М.В. Ломоносова

Email: mkhrenova@lcc.chem.msu.ru
Rússia, Москва

А. Немухин

Московский государственный университет имени М.В. Ломоносова; Институт биохимической физики имени Н.М. Эмануэля РАН

Email: mkhrenova@lcc.chem.msu.ru
Rússia, Москва; Москва

М. Хренова

Московский государственный университет имени М.В. Ломоносова; Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН

Autor responsável pela correspondência
Email: mkhrenova@lcc.chem.msu.ru
Rússia, Москва; Москва

Bibliografia

  1. Tsai P.C., Fox N., Bigley A.N. et al. // Biochemistry. 2012. Т. 51. № 32. С. 6463. doi: 10.1021/bi300811t
  2. Reemtsma T., García-López M., Rodríguez I. et al. // TrAC. 2008. Т. 27. № 9. С. 727. DOI: 10.1016/ j.trac.2008.07.002
  3. Du J., Li H., Xu S. et al. // Environ. Sci. Pollut. Res. 2019. Т. 26. С. 22126. doi: 10.1007/s11356-019-05669-y
  4. Stubbings W.A., Schreder E.D., Thomas M.B. et al. // Environ. Pollut. 2018. Т. 238. С. 1056. DOI: 10.1016/ j.envpol.2018.03.083
  5. Xiang D.F., Bigley A.N., Ren Z. et al. // Biochemistry. 2015. Т. 54. С. 7539. doi: 10.1021/acs.biochem.5b01144
  6. Vanhooke J.L., Benning M.M., Raushel F.M., Holden H.M. // Biochemistry. 1996. Т. 35. С. 6020. doi: 10.1021/bi960325l
  7. Grimsley J.K., Calamini B., Wild J.R., Mesecar A.D. // Arch. of Bioch. and Biophys. 2005. Т. 442. № 2. С. 169. doi: 10.1016/j.abb.2005.08.012
  8. Zhang X., Wu R., Song L. et al. // J. Comput. Chem. 2009. Т. 30. № 15. С. 2388–2401. doi: 10.1002/jcc.21238
  9. Chen Sh.-L., Fang W.-H., Himo F. // J. Phys. Chem. B. 2007. Т. 111. № 6. С. 1253. doi: 10.1021/jp068500n
  10. Wong K.-Y., Gao J. // Biochemistry. 2007. Т. 46 № 46. С. 13352–13369. doi: 10.1021/bi700460c
  11. Jackson C.J., Foo J.-L., Kim H.-K. et al. // J. Mol. Biol. Т. 375. № 5. С. 1189–1196. doi: 10.1016/j.jmb.2007.10.061
  12. López-Canut V., Ruiz-Pernía J.J., Castillo R. et al. // Chem. Europ. J. 2012. Т. 18. № 31. С. 9612. doi: 10.1002/chem.201103615
  13. Bigley A.N., Raushel F.M. // Biochim. Biophys. Acta. 2013. Т. 1834. № 1. С. 443. DOI: 10.1016/ j.bbapap.2012.04.004
  14. Kim J., Tsai P.-Ch., Chen Sh.-L. et al. // Biochemistry. 2008. Т. 47. № 36. С. 9497. doi: 10.1021/bi800971v
  15. Jackson C., Kim H.-K., Carr P.D. et al. // Biochim. Biophys. Acta. 2005. Т. 1752. № 1. С. 55. doi: 10.1016/j.bbapap.2005.06.008
  16. Bora R.P., Mills M.J.L., Frushicheva M.P., Warshel A. // J. Phys. Chem. B. 2015. Т. 119. № 8. С. 3434. doi: 10.1021/jp5124025
  17. Yuzhuang F., Fan F., Wang B., Cao Z. // Chem.: Asian J. 2022. Т. 17. № 14. e202200439. doi: 10.1002/asia.202200439
  18. Aubert S.D., Li Y., Raushel F.M. // Biochemistry. 2004. Т. 43. № 19. С. 5707. doi: 10.1021/bi0497805
  19. Nam K., Cui Q., Gao J., York D.M. // J. Chem. Theory Comput. 2007. Т. 3. № 2. С. 486. doi: 10.1021/ct6002466
  20. Lopez X., York D.M. // Theor. Chem. Ac. Т. 2003. 109. С. 149. doi: 10.1007/s00214-002-0422-2
  21. Bräuer M., Kunert M., Dinjus E. et al. // J. Mol. Struct.: THEOCHEM. 2000. Т. 505. № 1–3. C. 289. doi: 10.1016/S0166-1280(99)00401-7
  22. Mardirossian N., Head-Gordon M. // Mol. Phys. 2017. Т. 115. № 19. С. 2315. DOI: 10.1080/ 00268976.2017.1333644
  23. Kim J., Tsai P. C., Chen S. L. et al. // Biochemistry. 2008. Т. 47. С. 9497. doi: 10.1021/bi800971v
  24. Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. // J. Mol. Biol. 1999. Т. 285. С. 1735. doi: 10.1006/jmbi.1998.2401
  25. Humphrey W., Dalke A., Schulten K. // J. Mol. Graph. 1996. Т. 14. С. 33. doi: 10.1016/0263-7855(96)00018-5
  26. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. Т. 26. С. 1781. doi: 10.1002/jcc. 20289
  27. Best R.B., Zhu X., Shim J. et al. // J. Chem. Theory Comput. 2012. Т. 8. С. 3257. doi: 10.1021/ct300400x
  28. Vanommeslaeghe K., Hatcher E., Acharya C. et al. // J. Comput. Chem. 2009. Т. 31. С. 671. doi: 10.1002/jcc.21367
  29. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. Т. 79. С. 926. doi: 10.1063/1.445869
  30. Adamo C., Barone V. // J. Chem. Phys. 1999. Т. 110. С. 6158. doi: 10.1063/1.478522
  31. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Т. 132. С. 154104. DOI: 10.1063/ 1.3382344
  32. Hay P.J., Wadt W.R. // J. Chem. Phys. 1985. Т. 82. № 1. С. 299. doi: 10.1063/1.448975
  33. Seritan S., Bannwarth C., Fales B.S. et al. // WIREs Comput. Mol. Sci. 2021. Т. 11. e1494. doi: 10.1002/wcms.1494.
  34. Melo M.C.R., Bernardi R.C., Rudack T. et al. // Nat. Methods. 2018. Т. 15. С. 351–354. doi: 10.1038/nmeth.4638
  35. Martyna G.J., Klein M.L. // J. Chem. Phys. 1992. Т. 97. № 4. С. 2635. doi: 10.1063/1.463940
  36. Singer K., Smith W. // Mol. Phys. 1988. Т. 64. № 6. С. 1215. doi: 10.1080/00268978800100823
  37. Lu Y., Farrow M.R., Fayon P. et al. // J. Chem. Theory Comput. 2019. Т. 15(2). Р. 1317. doi: 10.1021/acs.jctc.8b01036
  38. Kästner J., Carr J.M., Keal T.W., Thiel W. // J. Phys. Chem. A. 2009. Т. 113. № 43. С. 11856. doi: 10.1021/jp9028968
  39. Ahlrichs R., Bar M., Iser M.H. et al. // Chem. Phys. Let. 1989. Т. 162. № 3. С. 165. doi: 10.1016/0009-2614(89)85118-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Substrate structures: dibutyl-4-nitrophenyl phosphate (a) with a good leaving group and dibutylphenyl phosphate (b) with a bad leaving group

Baixar (59KB)
3. Fig. 2. On the left: The structure of phosphotriesterase from the bacterium Pseudomonas diminuta (Pd-PTE) – the atoms of the active center are shown by spheres. On the right: the substrate in the Pd-PTE active center, dotted lines show the coordination bonds of zinc cations, the dashed line shows the hydrogen bond of the catalytic hydroxide anion and the amino acid residue Asp301

Baixar (417KB)
4. Fig. 3. Mechanisms of hydrolysis of PHOS by phosphotriesterase Pd-PTE proposed in the literature. Both mechanisms involve a nucleophilic attack by the hydroxide anion of the phosphorus atom to form a pentacoordinated intermediate. Further separation of the outgoing group is accompanied by the formation of a P-OH bond (in mechanism (a)) or a P-O bond and the transfer of a proton to aspartic acid (mechanism (b))

Baixar (237KB)
5. Fig. 4. Cross sections of the potential energy surface for the hydrolysis reaction: a – dibutyl-4-nitrophenyl phosphate (1) and b – dibutylphenyl phosphate (2) in the active center of Pd-PTE phosphotriesterase. ES – enzyme-substrate complex, TS1 and TS2 – transition states, INT – intermediate, EP – enzyme-product complex

Baixar (114KB)
6. Fig. 5. The mechanism of the hydrolysis reaction of dibutyl-4-nitrophenyl phosphate in the active center of Pd-PTE phosphotriesterase. ES – enzyme-substrate complex, TS1 and TS2 – transition states, INT – intermediate, EP – enzyme-product complex

Baixar (202KB)
7. Fig. 6. The first stage of the dibutylphenyl phosphate hydrolysis reaction in the active center of Pd-PTE phosphotriesterase. ES – enzyme-substrate complex, TS1 – transition state, INT – intermediate

Baixar (135KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024