Parametric Evaluation of the Energy of Tetrel Bonds in Complexes of Tetrahedral Molecules with Ammonia and Halide Anions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electronic properties of weak and strong tetrel bonds (TtBs) formed by the elements of the carbon subgroup Tt = C, Si, Ge, Sn, Pb, which provide their subatomic electrophilic site for noncovalent interactions, have been studied. Generalized quantitative models for evaluating the energy of tetrel bonds were obtained for a large sample of molecular complexes formed by halide anions or ammonia molecule with tetrahedral molecules used as an example. The replacement of the nucleophilic fragment in the complexes leads to different trends for the dependences of the interaction energy on the electronic characteristic of the bond. The minimum of the electrostatic potential on the line of the tetrel bond proved to be the most universal factor suitable for quantitative comparison of both weak and relatively strong bonds within a single parametric model.

Sobre autores

E. Bartashevich

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

S. Mukhitdinova

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

I. Klyuev

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

V. Tsirelson

South Ural State University (National Research University); Mendeleev University of Chemical Technology of Russia

Autor responsável pela correspondência
Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia; 125047, Moscow, Russia

Bibliografia

  1. Politzer P., Murray J.S. // Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta). 2002. V. 108. № 3. P. 134.
  2. Bartashevich E.V., Matveychuk Y.V., Mukhitdinova S.E. et al. // Theor. Chem. Acc. 2020. V. 139. № 2. P. 26.
  3. Legon A.C. // Phys. Chem. Chem. Phys. 2017. V. 19. № 23. P. 14884.
  4. Alkorta I., Elguero J., Frontera A. // Crystals. 2020. V. 10. № 3. P. 180.
  5. Grabowski S.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1824.
  6. Daolio A., Scilabra P., Terraneo G. et al. // Coord. Chem. Rev. 2020. V. 413. P. 213265.
  7. Scilabra P., Kumar V., Ursini M. et al. // J. Mol. Model. 2018. V. 24. № 1. P. 37.
  8. Scheiner S. // J. Phys. Chem. A. 2018. V. 122. № 9. P. 2550.
  9. Hou M., Liu Z., Li Q. // Int. J. Quantum Chem. 2020. V. 120. № 15. P. e26251.
  10. Scheiner S. // Phys. Chem. Chem. Phys. 2021. V. 23. № 10. P. 5702.
  11. Zierkiewicz W., Michalczyk M., Scheiner S. // Molecules. 2018. V. 23. № 6. P. 1416.
  12. Grabowski S. // Molecules. 2018. V. 23. № 5. P. 1183.
  13. Scheiner S. // Ibid. 2018. V. 23. № 5. P. 1147.
  14. Liu M., Li Q., Cheng J. et al. // J. Chem. Phys. 2016. V. 145. № 22. P. 224310.
  15. Frontera A., Bauzá A. // Chem. – A Eur. J. 2018. V. 24. № 62. P. 16582.
  16. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. 533 с.
  17. Bader R.F.W. // J. Phys. Chem. A. 1998. V. 102. № 37. P. 7314.
  18. Tsirelson V.G. // The Quantum Theory of Atoms in Molecules. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2007. P. 257.
  19. Pendás A.M., Francisco E., Blanco A.M. et al. // Chem. – A Eur. J. 2007. V. 13. № 33. P. 9362.
  20. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170.
  21. Mata I., Alkorta I., Espinosa E. et al. // Ibid. 2011. V. 507. № 1–3. P. 185.
  22. Espinosa E., Alkorta I., Elguero J. et al. // J. Chem. Phys. 2002. V. 117. № 12. P. 5529.
  23. Vener M.V., Egorova A.N., Churakov A.V. et al. // J. Comput. Chem. 2012. V. 33. № 29. P. 2303.
  24. Bushmarinov I.S., Lyssenko K.A., Antipin M.Y. // Russ. Chem. Rev. 2009. V. 78. № 4. P. 283.
  25. Ananyev I.V., Karnoukhova V.A., Dmitrienko A.O. et al. // J. Phys. Chem. A. 2017. V. 121. № 23. P. 4517.
  26. Bartashevich E.V., Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181.
  27. Kuznetsov M.L. // Molecules. 2019. V. 24. № 15. P. 2733.
  28. Kuznetsov M.L. // Int. J. Quantum Chem. 2019. V. 119. № 8. P. e25869.
  29. Bartashevich E.V., Tsirelson V.G. // Phys. Chem. Chem. Phys. 2013. V. 15. № 7. P. 2530.
  30. Alkorta I., Legon A. // Molecules. 2017. V. 22. № 10. P. 1786.
  31. Granovsky A.A. Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html.
  32. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  33. Jorge F.E., Neto A.C., Camiletti G.G. et al. // Ibid. 2009. V. 130. № 6. P. 064108.
  34. Bartashevich E.V., Mukhitdinova S.E., Klyuev I.V. et al. // Molecules. 2022. V. 27. № 17. P. 5411.
  35. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580.
  36. Colombant D., Manheimer W., Ott E. // Phys. Rev. Lett. 1984. V. 53. № 5. P. 446.
  37. Statistica: 13. TIBCO Software Inc, http://statsoft.ru/#tab-STATISTICA-link
  38. Vener M.V., Shishkina A.V., Rykounov A.A. et al. // J. Phys. Chem. A 2013. V. 117. № 35. P. 8459.
  39. Mata I., Alkorta I., Espinosa E. et al. // Chem. Phys. Lett. V. 508. № 4–6. P. 332.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (314KB)
3.

Baixar (138KB)
4.

Baixar (177KB)
5.

Baixar (154KB)

Declaração de direitos autorais © Е.В. Барташевич, С.Э. Мухитдинова, И.В. Клюев, В.Г. Цирельсон, 2023