Complexation of L-histidine with pyridine carboxylic acid isomers in aqueous buffer solution at 298.15 K: a calorimetric study
- 作者: Tyunina Е.Y.1, Mezhevoi I.N.1
-
隶属关系:
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- 期: 卷 99, 编号 1 (2025)
- 页面: 89-96
- 栏目: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- ##submission.dateSubmitted##: 01.06.2025
- ##submission.datePublished##: 17.04.2025
- URL: https://innoscience.ru/0044-4537/article/view/681871
- DOI: https://doi.org/10.31857/S0044453725010081
- EDN: https://elibrary.ru/EIKIBI
- ID: 681871
如何引用文章
详细
The peculiarities of interaction of heterocyclic amino acid of L-histidine (His) with structural isomers of pyridine carboxylic acid: picolinic (PA), nicotinic (NA), and isonicotinic (INA) acids in the phosphate buffer, pH 7.4 at T = 298.15 K, are studied by the method of solution calorimetry. Thermodynamic parameters, viz. binding constants, enthalpies of complexation, Gibbs energies and entropies, are determined. For His and pyridine monocarboxylic acids, the formation of hydrogen bonds and electrostatic interactions is found to be the main force determining the formation of complexes between them in the buffer solution, as evidenced by large negative enthalpy values and positive entropy values. The stability of the obtained complexes depends on the structural isomerism of pyridine carboxylic acid and increases in the series: PA < NA < INA. The main contribution to the stabilization of the formed complexes is shown to be made by the enthalpic component of the Gibbs free energy of complexation.
全文:

作者简介
Е. Tyunina
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: tey@isc-ras.ru
俄罗斯联邦, Ivanovo, 153045
I. Mezhevoi
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Email: tey@isc-ras.ru
俄罗斯联邦, Ivanovo, 153045
参考
- Zhang J., Zhu C., Ma Y. // J. Chem. Thermodynamics. 2017. V. 111. P. 52. http://dx.doi.org/10.1016/j.jct.2017.02.024
- Chauhan S., Singh K., Kumar K. et al. // J. Chem. Eng. Data. 2016. V. 61. P. 788. https://doi.org/10.1021/acs.jced.5b00549
- Sawhney N., Kumar M., Sharma A.K. et al. // J. Chem. Thermodynamics. 2017. V. 115. P. 156. https://doi.org/10.1016/j.jct.2017.07.040
- Tavallali H., Espergham O., Deilamy-Rad G. et al. // Anal. Biochem. 2020. V. 604. P. 113811. https://doi.org/10.1016/j.ab.2020.113811
- Li Sh., Hong M. // J. Am. Chem. Soc. 2011. V. 133. P. 1534. https://dx.doi.org/10.1021/ja108943n
- Gille A., Bodor E.T., Ahmed K. et al. // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79. https://doi.org/10.1146/annurev.pharmtox.48.113006.094746
- Zhang Y. // Annu. Rev. Pharmacol. Toxicol. 2005. V. 45. P. 529. https://doi.org/10.1146/annurev.pharmtox.45.120403.100120
- El-Dean A.M.K., Abd-Ella A.A., Hassanien R. et al. // ACS Omega. 2019. V. 4. P. 8406. https://doi.org/10.1021/acsomega.9b00932
- Marinković A.D., Drmanić S.Ž., Jovanović B.Ž. et al. // J. Serb. Chem. Soc. 2005. V. 70. P. 557.
- Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148. http://dx.doi.org/10.1016/j.molliq.2017.07.106
- Al-Saif F.A., Al-Humaidi J.Y., Binjawhar D.N. et al. // J. Mol. Struct. 2020. V. 1218. P. 128547. https://doi.org/10.1016/j.molstruc.2020.128547
- Lugo M.L., Lubes V.R. // J. Chem. Eng. Data. 2007. V. 52. P. 1217. https://doi.org/10.1021/je6005295
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochimica Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
- Tyunina E.Yu., Mezhevoi I.N. // Ibid. 2023. V. 180. P. 107020. https://doi.org/10.1016/j.jct.2023.107020
- Чернова Р.К., Варыгина О.В., Березкина Н.С. // Изв. Саратовского ун-та. Нов. Сер. Сер. Химия. Биология. Экология. 2015. Т. 15. № 4. С. 15. https://doi.org/10.18500/1816-9775-2015-15-4-15-21
- Лыткин А.И., Баделин В.Г., Крутова О.Н. и др. // Журн. общей химии. 2019. Т. 89. № 11. С. 1719. [Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235. https://doi.org/10.1134/S1070363219110124].
- Баделин В.Г., Тюнина Е.Ю., Межевой И.Н. // Журн. прикл. химии. 2007. Т. 80. № 5. С. 732. [Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711.] https://doi.org/10.1134/S1070427207050047
- Tyunina E.Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem. Thermodynamics. 2020. V. 150. P. 106206. https://doi.org/10.1016/j.jct.2020.106206
- Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41. http://dx.doi.org/10.1016/j.tca.2015.03.007
- Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
- Parker V.B. Thermal properties of univalent electrolytes, vol. 2, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., US Gov., Washington, DC2, 1965, pp. 66.
- Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. https://doi.org/10.1063/1.556034
- Баделин В.Г., Смирнов В.И., Межевой И.Н. // Журн. физ. химии. 2002. Т. 76. № 7. С. 1299.
- Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092
- Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
- Palecz B. // J. Am. Chem. Soc. 2005. V. 127. P. 17768.
- Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1982. Т. 27. № 9. С. 2169. [Borodin V.A., Kozlovsky E.V., Vasil’ev V.P. // Russ. J. Inorg. Chem. 1982. V. 27. P. 2169–2172].
- Chemistry and biochemistry of the amino acids. / Ed. By G.C. Barret, Chapman and Hall, London-N.Y.; 1985.
- Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247.
- Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1985. Т. 55. С. 2780. [Vasil’ev V.P., Kochergina L.A., Garavin V.Yu. // Russ. J. Gen. Chem. 1985. V. 55. P. 2780.]
- Nagal H., Kuwabara K., Carta G. // J. Chem. Eng. Data. 2008. V. 53. P. 619. https://doi.org/10.1021/je700067a
- Ashton L.A., Bullock J. // J. Chem. Soc. Faraday Trans. Part 1. 1982. V. 78. P. 1177.
- Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. P. 3096. https://doi.org/10.1021/bi00514a017
- Castronuovo G., Niccoli M., Varriale L. // Tetrahedron. 2007. V. 63. P. 7047. https://doi.org/10.1016/j.tet.2007.05.014
- Куранова Н.Н. Комплексообразование и кислотно-основные равновесия в водно-органических растворах Cu2+, Fe3+ и никотиновой кислоты: Автореф. дис. … канд. хим. наук. Иваново: ИГХТУ, 2019. 16 с.
- Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. физ. химии. 2020. Т. 94. С. 1904. [Lytkin A.I., Chernikov V.V., Krutova O.N., Krutova E.D. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 2569. https://doi.org/10.1134/S003602442012016X]
- Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. физ. химии. 2020. Т. 94. № 2. С. 1002. [Lytkin A.I., Chernikov V.V., Krutova O.N., Krutova E.D. // Ibid. A. 2020. V. 94. P. 1342. https://doi.org/10.1134/S0036024420070213]
- Sabbah R., Ider S. // Can. J. Chem. 1999. V. 77. P. 249. https://doi.org/10.1139/cjc-77-2-249
- Koczoń P., Dobrowolski J.Cz., Lewandowski W. // J. Molec. Struct. 2003. V. 655. P. 89. https://doi.org/10.1016/S0022-2860(03)00247-3
- Haj-Zaroubi M., Schmidtchen F.P. // Chem. Phys. Chem. 2005. V. 6. P. 1181. https://doi.org/10.1002/cphc.200400559
补充文件
