On applicability of embedded atom model (EAM) potentials to liquid silicon and germanium

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Potentials of the embedded atom model (EAM) for liquid silicon and germanium are proposed. The potentials are calculated from diffraction data using the Schommers algorithm and presented in the form of tables and piecewise continuous polynomials. Each pairwise contribution to the potential has a form close to a hard-sphere one with a step down. The properties of liquid Si and Ge at temperatures up to 2000 K are calculated, viz. the density, energy, bulk modulus, and self-diffusion coefficients. The agreement with the experiment is noted to be good. The bond direction is found to almost completely disappear after melting for ordinary densities of liquid Si and Ge. The bond direction is assumed to be able to appear at heating and when the density of melts is decreased by 2–3 times.

全文:

受限制的访问

作者简介

D. Belashchenko

National University of Science and Technology (MISiS)

编辑信件的主要联系方式.
Email: dkbel75@gmail.com
俄罗斯联邦, Moscow

参考

  1. Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980.
  2. Funamori N., Tsuji K. // Phys. Rev. Lett. 2002. V. 88. P. 255508.
  3. Demchuk T., Bryk T., Seitsonen A.P. et al. // arXiv:2009.00834. https://doi.org/10.48550/arXiv.2009.00834
  4. Assael M.J., Armyra I.J., Brillo J. et al. // J. Phys. Chem. Ref. Data. 2012. V. 41. № 3. https://doi.org/10.1063/1.4729873
  5. Глазов В.М., Чижевская С.Н, Глаголева Н.Н. Жидкие полупроводники. М.: Наука, 1967.
  6. Гурвич Л.А., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Т. 2. Кн.2. М.: Наука, 1979.
  7. Desai P.D. // J. Phys. Chem. Ref. Data. 1986. V. 15. № 3. P. 967.
  8. Текучев В.В. Акустические и физико-химические свойства электронных расплавов. Волгоград. 2016.
  9. Регель А.Р., Глазов В.М. Физические свойства электронных расплавов. М.: Наука, 1980.
  10. Weis H., Kargl F., Kolbe M. et al. // J. Phys.: Condens. Matter. 2019. V. 31. P. 455101.
  11. Luo Sheng-Nian, Ahrens T.J., Asimow P.D. // J. Geophys. Res. 2003. V. 108. № B9. P. 2421. https://doi.org/10.1029/2002JB002317.
  12. Oleynik I.I., Zybin S.V., Elert M.L., White C.T. // CP845 “Shock Compression in Condensed Matter”. Ed. M.D. Furnish et al. 2005. P. 413.
  13. Stillinger F.H., Weber T.A. // Phys. Rev. B. 1985. V. 31. P. 5262.
  14. Dziedzic J., Principi E., Rybicki J. // J. Non-Cryst. Solids. 2006. V. 352. P. 4232.
  15. Jadhav P.P., Dongale T.D., Vhatkar R.S. // AIP Conference Proceedings 2162, 020038 (2019). https://doi.org/10.1063/1.5130248
  16. Tersoff J. // Phys. Rev. B. 1988. V. 38. P. 9902; 1989. V. 39. P. 5566.
  17. Ishimaru M., Yoshida K., Motooka T. // Phys. Rev. B. 1996. V. 53. № 11. P. 7176.
  18. Cook S.J., Clancy P. // Phys. Rev. B. 1993. V. 47. P. 7686.
  19. Bazant M.Z., Kaxiras E. // Phys. Rev. Lett. 1996. V. 77. P. 4370.
  20. Luo J., Zhou Ch., Cheng Y., Liu L. // J. Crystal Growth. 2020. P. 1. https://doi.org/10.1016/j.jcrysgro.2020.125785
  21. Štich I., Car R., Parrinello M. // Phys. Rev. B. 1991. V. 44. P. 4262.
  22. NIST. IPS Interatomic Potentials Repository: www.ctcms.nist.gov/potentials/refs.html
  23. Baskes M.I. // Phys. Rev. B. 1992. V. 46. P. 2727. https://doi.org/10.1103/PhysRevB.46.2727
  24. Baskes M.I., Nelson J.S., Wright A.F. // Phys. Rev. B. Condens. Matter. 1989. V. 40. № 9. P. 6085. https://doi.org/10.1103/physrevb.40.6085
  25. Starikov S.V., Lopanitsyna N.Yu., Smirnova D.E., Makarov S.V. // Computational Materials Science. 2018. V. 142. P. 303.
  26. Starikov S., Gordeev I., Lysogorskiy Yu. et al. // Computational Materials Science. 2020. V. 184. P. 109891. https://doi.org/10.1016/j.commatsci.2020.109891
  27. Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. № 12. P. 6443.
  28. Schommers W. // Phys. Rev. A. 1983. V. 28. P. 3599.
  29. Belashchenko David K. Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth’s Core and Nanoclusters. NOVA Science Publushers. NY.
  30. Zhu Z.G., Liu C.S. // Phys. Rev. B. 2000. V. 61. № 14. P. 9322.
  31. Hayashi M., Yamada H., Nabeshima N., Nagata K. // Int. J. Thermophysics. 2007. V. 28. № 1. P. 83. https://doi.org/10.1007/s10765-007-0151-9
  32. Chelikowsky J.R., Troullier N., Binggeli N. // Phys. Rev. B. 1994. V. 49. P. 114.
  33. Yu W., Wang Z.Q., Stroud D. // Phys. Rev. B. 1996. V. 54. № 19. P. 13946.
  34. Белащенко Д.К // Журн. физ. химии. 2019. T. 93. № 6. C. 877.
  35. Speedy R.J. // Mol. Physics. 1987. V. 62. № 2. P. 509.
  36. Бeлaщeнкo Д.K. // Physics–uspekhi. 2013. V. 183. № 12. P. 1176.
  37. Alteholz Th., Hoyer W. // J. Non-Cryst. Solids. 1999. V. 250–252. P. 48.
  38. Petkov V., Takeda S., Waseda Y., Sugiyama K. // J. Non-Cryst. Solids. 1994. V. 168. P. 97.
  39. Sato Y., Nishizuka T., Tachikawa T. et al. // High Temperatures – High Pressures. 2000. V. 32. P. 253.
  40. Tsuchiya Y. // J. Phys. Soc. Japan. 1991. V. 60. № 1. P. 227.
  41. Masaki T., Itami T. // “Modeling and Precise Experiments of Diffusion Phenomena in Melts under Microgravity” Annual Reports. 2002, NASDA-TMR-030005E.
  42. Kato M., Minowa S. // Trans. Iron Steel Institute of Japan. 1969. V. 9. P. 39.
  43. Tsuji K., Mori T., Hattori T. et al. // 2000B0087-CD-np BL04B1.
  44. Kōga J., Okumura H., Nishio K. et al. // Phys. Rev. B. 2002. V. 66. P. 064211.
  45. Kishimura H., Matsumoto H., Thadhani N.N. // J. Physics: Conference Series. 2010. V. 215. Р. 012145. https://doi.org/10.1088/1742-6596/215/1/012145
  46. Ding K., Andersen H.C. // Phys. Rev. B. 1986. V. 34. № 10. P. 6987.
  47. Kim Eun Ha, Shin Young-Han, Lee Byeong-Joo // Computer Coupling of Phase Diagrams and Thermochemistry. 2008. V. 32. P. 34.
  48. Zuo Y., Chen C., Li X. et al. // J. Phys. Chem. A. 2019. V. 124. № 4. P. 731. https://doi.org/10.1021/acs.jpca.9b08723
  49. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251.
  50. Белащенко Д.К. // Кристаллография. 1998. Т. 43. № 3. С. 400.
  51. Kulkarni R.V., Aulbur W.G., Stroud D. // Phys. Rev. B. 1997. V. 55. P. 6896.
  52. Lucas L.D., Urbain G. // C. r. Acad. Sci. 1962. V. 255. № 19. P. 2414.
  53. Munejiri S., Shimojo F., Hoshino K., Itami T. // NASDA, Tsukuba 305–8505, Japan
  54. Hoshino K. // J. Phys.: Condens. Matter. 2009. V. 21. No 47. P. 474212. https://doi.org/10.1088/0953-8984/21/47/474212

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Pair correlation function of Si at 1773 K: 1 - diffraction data [1], 2 - model with EAM potential.

下载 (86KB)
3. Fig. 2. Pairwise contribution to the EAM potential of liquid silicon. Schommers algorithm.

下载 (63KB)
4. Fig. 3. Frequency of occurrence of QF Z in the liquid silicon model at 1690 K. Radius of the coordination sphere 3.05 Å: 1 - EAM potential, 2-1800 K, ab initio method [21].

下载 (98KB)
5. Fig. 4. Azimuthal angles θ in the Si model at 1733 K.

下载 (123KB)
6. Fig. 5. PCF of liquid germanium: 1 - diffraction data at 1253 K [1], 2 - model with EAM potential. Non-coupling Rg = 0.020.

下载 (108KB)
7. Fig. 6. Paired contribution to the EAM potential of germanium, 1253 K.

下载 (82KB)
8. Fig. 7. Coordination numbers of the germanium model at 1253 K. The radius of the nearest neighbor sphere is 3.6 Å.

下载 (89KB)
9. Fig. 8. Azimuthal angles in the Ge model at 1253 K: 1 - nearest-neighbor sphere radius 3.6 Å, 2 - sphere radius 2.8 Å.

下载 (146KB)

版权所有 © Russian Academy of Sciences, 2025