Studying the electrochemical behavior of a smooth gold electrode in a solution of bridged 1,2,4-trioxalane in acetonitrile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of a smooth gold electrode in the medium of bridged 1,2,4-trioxalane in acetonitrile is studied by cyclic voltammetry and gravimetry methods. It is found that during the cathodic process, the reduction of the peroxide bond in the bridged 1,2,4-trioxalane molecule takes place at the electrode surface followed by the formation of a diketone moiety. During anodic oxidation, the formation of colloidal gold particles is detected.

Full Text

Restricted Access

About the authors

M. V. Polyakov

N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: SatPolyak@yandex.ru
Russian Federation, Moscow, 119991

M. D. Vedenyapina

N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: SatPolyak@yandex.ru
Russian Federation, Moscow, 119991

A. M. Skundin

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: SatPolyak@yandex.ru
Russian Federation, Moscow, 119071

I. A. Yaryomenko

N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: SatPolyak@yandex.ru
Russian Federation, Moscow, 119991

P. S. Radulov

N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: SatPolyak@yandex.ru
Russian Federation, Moscow, 119991

References

  1. Ann Casteel D. // Nat. Prod. Rep. 1999. V. 16. № 1. P. 55. https://doi.org/10.1039/A705725C
  2. Phillipson D.W., Rinehart K.L. Jr. // J. Am. Chem. Soc. 1983. V. 105. № 26. P. 7735–7736. https://doi.org/10.1039/A705725C
  3. Yaremenko I.A., Radulov P.S., Belyakova Y.Y. et al. // Chem. Europ. J. 2020. V. 26. № 21. P. 4734. https://doi.org/10.1002/chem.201904555
  4. Yaremenko I.A., Syromyatnikov M.Y., Radulov P.S. et al. // Molecules. 2020. V. 25. № 8. P. 1954. https://doi.org/10.3390/molecules25081954
  5. Panic G., Duthaler U., Speich B., Keiser J. // Int. J. Parasitol. Drugs Drug. Resist. 2014. V. 4. № 3. P. 185. https://doi.org/10.1016/j.ijpddr.2014.07.002
  6. Vil’ V.A., Yaremenko I.A., Ilovaisky A.I., Terent’ev A.O. // Synthesis and Reactions. Molecules. 2017. V. 22. № 11. P. 1881. https://doi.org/10.3390/molecules22111881
  7. Kiuchi F., Itano Y., Uchiyama N. et al. // J. Am. Pharm. Assoc. 2002. V. 65. № 4. P. 509. https://doi.org/10.1021/np010445g
  8. Wenzel D.G., Smith C.M. // J. Am. Pharm. Assoc. Am. Pharm. Assoc. 1958. V. 47. № 11. P. 792. https://doi.org/10.1002/jps.3030471109
  9. Herrmann L., Yaremenko I.A., Çapcı A. et al. // Chem. Med. Chem. 2022. V. 17. № 9. https://doi.org/10.1002/cmdc.202200005
  10. Coghi P., Yaremenko I.A., Prommana P. et al. // Ibid. 2022. V. 17. № 20. https://doi.org/10.1002/cmdc.202200328
  11. Slade D., Galal A.M., Gul W. et al. // Bioorg. Med. Chem. 2009. V. 17. № 23. P. 7949. https://doi.org/10.1016/j.bmc.2009.10.019
  12. Yaremenko I.A., Coghi P., Prommana P. et al. // Chem. Med. Chem 2020. V. 15. № 13. P. 1118–1127. https://doi.org/10.1002/cmdc.202000042
  13. Yaremenko I.A., Syroeshkin M.A., Levitsky D. et al. // Med. Chem. Res. 2017. V. 26. № 1. P. 170. https://doi.org/10.1007/s00044-016-1736-2
  14. Tiwari M.K., Chaudhary S. // Med. Res. Rev. 2020. V. 40. № 4. P. 1220. https://doi.org/10.1002/med.21657
  15. Uddin A., Chawla M., Irfan I. et al. // RSC Med. Chem. 2020. V. 12. № 1. P. 24. https://doi.org/10.1039/d0md00244e
  16. Woodley C.M., Amado P.S.M., Cristiano M.L.S., O’Neill P.M. // Med. Res. Rev. 2021. V. 41. № 6. P. 3062. https://doi.org/10.1002/med.21849
  17. Otoguro K., Iwatsuki M., Ishiyama A. et al. //Phytochem. 2011. V. 72. № 16. P. 2024. https://doi.org/10.1016/j.phytochem.2011.07.015
  18. Perry T.L., Dickerson A., Khan A.A. et al. // Tetrahedron. 2001. V. 57. № 8. P. 1483. https://doi.org/10.1016/S0040-4020(00)01134-0
  19. Kumar M., Gehlot P.S., Parihar D. et al. // Eur. Pol. J. 2021. V. 152. https://doi.org/10.1016/j.eurpolymj.2021.110448
  20. Lee M., Minoura Y. // J. Chem. Soc., Faraday Trans. 1978. V. 74. № 0. P. 1726. https://doi.org/10.1039/f19787401726
  21. Przybysz-Romatowska M., Haponiuk J., Formela K. // Polymers. 2020. V. 12. № 1. https://doi.org/10.3390/polym12010228
  22. Радулов П.С., Белякова Ю.Ю., Демина А.А. и др. // Изв. АН. Сер. Хим. 2019. Т. 68. № 6. С. 1289–1292. (Radulov P.S., Belyakova Y.Y., Demina A.A. et al. // Russ. Chem. Bull. 2019. V. 68. № 6. P. 1289. https://doi.org/10.1007/s11172-019-2555-7)
  23. Matsumoto A., Maruoka K. // Bull. Chem. Soc. Jpn. 2020. V. 94. № 2. P. 513. https://doi.org/10.1246/bcsj.20200321
  24. Gemki M., Taspinar Ö., Adler A. et al. // Org. Proc. Res. Dev. 2021. V. 25. № 12. P. 2747. https://doi.org/10.1021/acs.oprd.1c00364
  25. Zdvizhkov A., Terent’ev A., Radulov P. et al. // Tetrahedron Lett. 2016. V. 57. № 8. https://doi.org/10.1016/j.tetlet.2016.01.061
  26. Rountree E.S., McCarthy B.D., Eisenhart T.T., Dempsey J.L. // Inorg. Chem. 2014. V. 53. № 19. P. 9983.
  27. Savéant J.-M. // Advances in Physical organic chemistry. 2000. V. 35. P. 117. https://doi.org/10.1016/s0065-3160(00)35013-4
  28. Magri D.C., Workentin M.S. // Org. Biomol. Chem. 2008. V. 6. № 18. P. 3354. https://doi.org//10.1039/b809356c
  29. Yaremenko I.A., Coghi P., Prommana P. et al. // Chem. Med. Chem. 2020. V. 15. № 13. P. 1118. https://doi.org//10.1002/cmdc.202000042
  30. Magri D.C., Workentin M.S. // Molecules. 2014. V. 19. № 8. P. 11999. https://doi.org//10.3390/molecules190811999
  31. Magri D.C., Workentin M.S. // Chemistry. 2008. V. 14. № 6. P. 1698. https://doi.org//10.1002/chem.200701740
  32. Веденяпина М.Д., Симакова А.П., Платонов М.М. и др. // Журн. физ. химии. 2013. Т. 87. № 3. С. 418. (Vedenyapina M.D., Simakova A.P., Platonov M.M. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024413030333)
  33. Magri D.C., Donkers R.L., Workentin M.S. // J. Photochem. Photobiol., A. 2001. V. 138. № 1. P. 29. https://doi.org//10.1016/S1010-6030(00)00386-5
  34. Stringle D.L., Magri D.C., Workentin M.S. // Chemistry. 2010. V. 16. № 1. P. 178. https://doi.org//10.1002/chem.200902023
  35. Веденяпина М.Д., Скундин А.М., Виль В.А. и др. // Журн. физ. химии. 2020. Т. 94. № 4. С. 624–628. (Vedenyapina M.D., Skundin A.M., Vil’ V.A. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024420040238)
  36. Веденяпина М.Д., Скундин А.М., Виль В.А. и др. // Журн. физ. химии. 2021. Т. 95. № 1. С. 147–151. (Vedenyapina M.D., Skundin A.M., Vil’ V.A. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024421010313)
  37. Веденяпина М.Д., Виль В.А., Терентьев А.О., Веденяпин А.А. // Изв. АН. Сер. Хим. 2017. Т. 66. № 11. С. 2044–2047. (Vedenyapina M.D., Vil’ V.A., Terent’ev A.O., Vedenyapin A.A. // Russ. Chem. Bull. 2017. V. 66. № 11. С. 2044.)
  38. Поляков М.В., Веденяпина М.Д., Скундин А.М. и др. // Журн. физ. химии. 2023. Т. 97. № 7. C. 972. https://doi.org//10.31857/S0044453723070221 (Polyakov M.V., Vedenyapina M.D., Skundin A.M. et al. // Russ. J. Phys. Chem. V. 97. P. 1438. https://doi.org//10.1134/S0036024423070221)
  39. Batchelor-McAuley C., Compton R.G. // J. Electroan. Chem. 2012. V. 669. P. 73. https://doi.org//10.1016/j.jelechem.2012.01.016
  40. Salah N., Lanez T. // Int. Lett. Chem. Phys. Astron. 2013. V. 4. P. 37.
  41. Поляков М.В., Веденяпина М.Д., Скундин А.М. и др. // Изв. АН. Сер. хим. 2024. Т. 74. № 4. С. 863.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Obtaining the substrate under study 3.

Download (87KB)
3. Fig. 1. CBA 3 in the cathodic region at the Au electrode, ν = 100, 150, 200, 250, 250, 300, 350, 350, 400, 450, 500 mV/s.

Download (73KB)
4. Fig. 2. Dependences of Ipc - ν0.5 for the first (a) and second (b) cathode peaks of CBA.

Download (105KB)
5. Fig. 3. CBA 3 in the anodic region at the Au electrode, ν = 100, 150, 200, 250, 250, 300, 350, 350, 400, 450, 500 mV/s.

Download (82KB)
6. Fig. 4. Dependence of Ip,a on ν0.5.

Download (59KB)
7. Fig. 5. Mass change of the gold anode, at I = 5 mA, in MeCN solution, the concentration of compound 3 was 0.05 M.

Download (41KB)
8. Scheme 2. Electrochemical corrosion of gold in the presence of compound 3 in acetonitrile medium.

Download (97KB)
9. Scheme 3. Cathodic reduction reaction of compound 3.

Download (59KB)

Copyright (c) 2025 Russian Academy of Sciences