Термодинамические функции трехатомных молекул. Аналитическое представление

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Дано аналитическое представление термодинамических функций нелинейных трехатомных молекул в замкнутой форме. Выведены аналитические формулы колебательных и вращательных статистических сумм. Приближения связанных нелинейных осцилляторов и асимметричного волчка используются для расчета этих статистических сумм. Верхние границы колебательных квантовых чисел и поведение термодинамических функций в зависимости от температуры даются на графиках и подробно обсуждаются для воды как тестовой системы. Надежность аналитического метода проверена сравнением с экспериментальными данными и с методом прямого суммирования, в котором используются теоретические значения энергетических уровней. Аналитический подход гораздо более эффективен, чем метод явного суммирования по состояниям.

Толық мәтін

Рұқсат жабық

Авторлар туралы

М. Стрекалов

Институт химической кинетики и горения, Сибирское отделение РАН

Хат алмасуға жауапты Автор.
Email: strekalov@kinetics.nsc.ru
Ресей, Новосибирск

Әдебиет тізімі

  1. Song X.Q., Wang C.W., Jia C.S. //Chem. Phys. Lett. 2017.V.673. P. 50.
  2. Jia C.J., Zhang L.H., Wang C.W. // Chem. Phys. Lett. 2017. V. 667. P. 211.
  3. Tang B., Wang Y.T., Peng X.L., Zhang L.H., Jia C.J. // J. Mol. Structure 2020. V. 1199. P. 126958.
  4. Louis H., Ita B.I., Nzeata N.I. //Eur. Phys. J. Plus 2019. V. 134. P. 315.
  5. Diaf A., Hachama M., Ezzine M.M. //Mol. Phys. 2023. V. 121. P. 2198045.
  6. Onate C.A., Onyeaju M.C., Okorie U.S., Ikot A.N. //Results in Physics 2020. V. 16. P. 102959.
  7. Стрекалов М.Л. //Журн. физ. Химии. 2005. Т. 79. С. 571. (Strekalov M.L. // Rus. J. Phys. Chem. 2005. V. 79. P. 483).
  8. Strekalov M.L. //Chem. Phys. Lett. 2007. V. 439. P. 209.
  9. Strekalov M.L. //Ibid. 2021. V. 764. P. 138262.
  10. Strekalov M.L. // Comput. Theor. Chem. 2021. V. 1202. P. 113337.
  11. Liu G.H., Ding Q.C., Wang C.W., Jia C.S. //J. Mol. Structure 2023.V. 1294. P. 136543.
  12. Liu G.H., Ding Q.C., Wang C.W., Jia C.S. //Chem. Phys. Lett. 2023.V. 830. P. 140788.
  13. Wang C.W., Wang J., Liu Y.S., et al. // J. Mol. Liquids. 2021. V. 321. P. 114912.
  14. Dong Q., Garsía Hernández H.I., Sun G.H., Toutounji M., Dong S.H. // Proc. Roy. Soc. A 2020. V. 476. P. 20200050.
  15. Sarkar P., Poulin N., Carrington T. // J. Chem. Phys. 1999. V. 110. P. 10269.
  16. Osipov V.M. // Mol. Phys. 2004. V. 102. P. 1785.
  17. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. https://doi.org/10.18434/T4D303
  18. Dardy P.S., Dahler J.S. //J. Chem. Phys. 1990. V. 93.P. 3562.
  19. Prudente F.V., Riganelli A., Varandas A.J.C. //J. Phys. Chem. A 2001.V. 105, P. 5272.
  20. Nielson H.H. // Rev. Mod. Phys. 1951. V. 23. P. 90.
  21. Гурвич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ. Т. 1. Кн. 1. М.: Наука, 1978. (Gurvich L.V., Veyts I.V., Alcock C.B. Thermodynamic Properties of Individual Substances.V. 1. 4th edn. N.Y.: Hemisphere, 1991.
  22. Qin Z., Zhao J.M., Liu L.H. // JQSRT 2018. V. 210. P. 1.
  23. Irwin A.W. //Astron. Astrophys. 1987. V. 182. P. 348.
  24. Wolf K.B. Integral Transforms in Science and Engineering N.Y.: Plenum Press, 1979.
  25. Watson J.K.G. // Mol. Phys. 1988. V. 65. P. 1377.
  26. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. 2017. http://Webbook.nist.gov/chemistry
  27. Martin J.M.L., François J.P., Gijbels R. // J. Chem. Phys. 1992. V. 96. P. 7633.
  28. Harris G.J., Viti S., Mussa H., Tennyson J. // J. Chem. Phys. 1998. V. 109. P. 7197.
  29. Vidler M., Tennyson J. // J. Chem. Phys. 2000. V. 113. P. 9766.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Definition without rotational dissociation energy D for water. Degenerate vibrations are absent. Upper limits of vibrational quantum numbers are N1=12, N2=47, N2=11; ν is the vibrational quantum number, ΔE is the vibrational energy.

Жүктеу (107KB)
3. Fig. 2. Statistical sum Qvr for water as a function of temperature compared with that calculated by Vidler and Tennyson [29].

Жүктеу (99KB)
4. Fig. 3. Dependence of heat capacity Cp (J/mol K) on temperature for water. Predicted values ​​are compared with experimental data [26].

Жүктеу (67KB)
5. Fig. 4. Comparison of calculated values ​​with experimental data [26] on the graph of molar entropy (J/(mol K)) versus temperature.

Жүктеу (70KB)
6. Fig. 5. Comparison of calculated values ​​with experimental data [26] on the graph of molar enthalpy H(T) – H(298.15) (kJ/mol) versus temperature.

Жүктеу (67KB)
7. Fig. 6. Dependence of the Gibbs free energy –(G(T) – H(298.15))/T (J/(mol K)) on temperature in comparison with experimental data [26].

Жүктеу (66KB)

© Russian Academy of Sciences, 2024