Получение наночастиц селенида галлия методом лазерной абляции в жидкости

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Экспериментально исследовались наночастицы С, полученные методом лазерной абляции твердой мишени в этаноле и в растворе PVP в этаноле. В качестве источника излучения использованы импульсы Nd:YAG-лазера с длительностью 10 нс, с энергией 135 мДж и длиной волны 1064 нм. В образованном коллоидном растворе наблюдались наночастицы диаметром от 2 до 20 нм. Рентгеноструктурным анализом установлено, что наночастицы обладают кристаллической структурой, аналогичной структуре объемного кристалла GaSe. Выявлено, что спектры фотолюминесценции композита наночастицы GaSe в поливинилпирролидоне охватывают широкую область излучения 400–650 нм.

Полный текст

Доступ закрыт

Об авторах

В. М. Салманов

Бакинский государственный университет

Автор, ответственный за переписку.
Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

А. Г. Гусейнов

Бакинский государственный университет

Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

М. А. Джафаров

Бакинский государственный университет

Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

Р. М. Maмeдов

Бакинский государственный университет

Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

Ф. Ш. Ахмедова

Бакинский государственный университет

Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

Т. А. Мамедова

Бакинский государственный университет

Email: vagif_salmanov@yahoo.com
Азербайджан, AZ1148, Баку

Список литературы

  1. Salmanov V.M., Huseynov A.G., Jafarov М.А., Mamedov R.M. // Chalcogenide Letters. 2021. V. 18. № 4. P. 155.
  2. Киселюк М.П., Власенко А.И., Генцарь П.А. и др. // Физика и техника полупроводников. 2010. Т. 44. Вып. 8. С. 1046.
  3. Lu X.Z., Rao R., Willman B. et al. // Phys. Rev. 1987. V. 36. P. 1140.
  4. Салманов В.М., Гусейнов А.Г., Мамедов Р.М. и др. // Оптика и спектроскопия. 2020. Т. 128. Вып. 4. С. 513.
  5. Абдуллаев Г.Б., Аллахвердиев К.Р., Кулевский Л.А. и др. // Квантовая электроника. 1975. Т. 2. № 6. С. 1228.
  6. Абдуллаев Г.Б., Кулевский Л.А., Прохоров А.П. и др. // Письма в ЖЭТФ. 1972. Т. 16. Вып. 3. С. 130.
  7. Боброва Е.А., Вавилов В.С., Галкин Г.Н. и др. // ФТП. 1975. Т. 11. Вып. 1. С. 132.
  8. Rybkovskiy D.V., Osadchy A.V., Obraztsova E.D. // J. of Nanoelectronics and Optoelectronics. 2013. V. 8. P. 110.
  9. Салманов В.М., Гусейнов А.Г., Мамедов Р.М. // Изв. ВУЗов. Томск. 2022. Т. 65. № 9. С. 54.
  10. Chikan V., Kelley D.F. // Nano Letters. 2002. V. 2. P. 141.
  11. Mogyorosi K., Kelley D.F. // J. Phys. Chem. 2007. V. 111. P. 579.
  12. Shoute L.C.T., David C., Kelley D.F. // J. Phys. Chem. C. 2007. V. 111. P. 10233.
  13. Zhuang H.L., Hennig R.G. // Chem. Mater. 2013. V. 25. P. 3232. doi: 10.1021/cm401661x
  14. Салманов В.М., Гусейнов А.Г., Мамедов Р.М. и др. // Журн. физ. химии. 2018. № 10. С. 150.
  15. Pashayev A., Tunaboylu B., Allahverdiyev K. et al. // Proc. of SPIE. 2015. V. 9810. P. 981017(1–12).
  16. Semaltianos N.G., Logothetidis S., Perrie W. et al. // Appl. Phys. Lett. 2009. 95. P. 033302.
  17. Elafandi S., Ahmadi Z., Azam N., Mahjouri-Samani M. // Nanomaterials. 2020. 10. P. 908.
  18. Bushunov A.A., Teslenko A.A., Tarabrin M.K. et al. // Optics Letters. 2020. V. 45. № 21. P. 5994.
  19. Салманов В.М., Гусейнов А.Г., Джафаров М.А., Мамедов Р.М. // Российские нанотехнологии. 2015. Т. 10. С. 92.
  20. Ruffino F., Grimaldi M.G. // Nanomaterials. 2019. V. 9. P. 1133. doi: 10.3390/nano9081133.
  21. Dolgaev S.I., Simakin A.V., Voronov V.V. et al. // Appl. Surf. Sci. 2002. 186. Р. 546–551. doi: 10.1016/S0169-4332(01)00634-1.
  22. Itina T.E. // J. Phys. Chem. C. 2011. V. 115. P. 5044.
  23. Абд А.Н., Исмаил Р.А., Хабуби Н.Ф. // Springer Science Business Media New York. 2015. P. 1.
  24. Mao S.S. // Int. J. of Nanotechnology 2004. V. 1. P. 42.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема экспериментальной установки для абляции наночастиц GaSe.

Скачать (113KB)
3. Рис. 2. Коллоидный раствор, полученный методом лазерной абляции GaSe в жидкой среде: а – при интенсивности лазерного излучения 1024 квант/(см2 с); б – при 1027 квант/(см2с).

Скачать (191KB)
4. Рис. 3. Дифрактрограмма (XRD) наночастиц GaSe на стеклянной подложке.

Скачать (87KB)
5. Рис. 4. Спектр оптического поглощения (а) и зависимость α2~ƒ(hʋ) (б) наночастиц GaSe, полученных в коллоидном растворе.

Скачать (73KB)
6. Рис. 5. Спектр фотолюминесценции наночастиц GaSe, возбуждаемой второй гармоникой неодимового лазера (ħω = 2.34 эВ).

Скачать (67KB)
7. Рис. 6. Спектр фотопроводимости наночастиц GaSe.

Скачать (67KB)

© Российская академия наук, 2024