Behavior of Surface-Active Substances in a Nitric Acid Medium and Prospects for Using Them in Hydrometallurgy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The behavior of surface-active substances (surfactants) is studied using the examples of lignosulfonate (LS) and sodium dodecyl sulfate (SDS) in aqueous and nitric acid media as promising additives for the nitric acid leaching of refractory ore concentrates. The effect the temperature (15–70°С) and concentrations of the surfactant (Csurfactant = 0.02–200 g/dm3) and nitric acid (CHNO3 = 0.1–10 g/dm3) have on the surface tension, critical concentration of micelles (CMC), electrical conductivity, pH, and optical density of solutions is established. The critical association of concentration is determined for lignosulfonate: CLS ~ 0.13–0.14 mol/dm3. An increase in the surface activity of lignosulfonate is noted upon raising the temperature of and adding nitric acid to an LS–H2O system. The established effects (a drop in σl–g) are explained by an increase in the coefficient of diffusion of LS macromolecules and a change in the intensity of the associative-dissociative processes of counterions and the LS polyanion. The positive effect nitric acid has on the surface activity of SDS is noted and found to reduce surface tension at the liquid–gas interface and CMCs. Associative processes in SDS–HNO3 systems are also confirmed by measuring the optical density of the considered systems.

Sobre autores

T. Lugovitskaya

Yeltsin Ural Federal University

Email: tlugovitskaja@mail.ru
620002, Yekaterinburg, Russia

L. Danilin

Yeltsin Ural Federal University

Email: tlugovitskaja@mail.ru
620002, Yekaterinburg, Russia

D. Rogozhnikov

Yeltsin Ural Federal University

Email: tlugovitskaja@mail.ru
620002, Yekaterinburg, Russia

S. Mamyachenkov

Yeltsin Ural Federal University

Autor responsável pela correspondência
Email: tlugovitskaja@mail.ru
620002, Yekaterinburg, Russia

Bibliografia

  1. Рогожников Д.А., Дизер О.А., Каримов К.А. и др. Азотнокислотная переработка полиметаллического сульфидного сырья цветных металлов. Екатеринбург: Изд-во УМЦ УПИ, 2020. 245 с.
  2. Adams M.D. Advances in gold ore processing, 1st ed. ed, Developments in mineral processing. Amsterdam: Elsevier, 2005. 994 p.
  3. Medina D., Anderson C.G. // Metals. 2020. V. 10. № 7. P. 897.
  4. Michael A., Irene A. Handbook of Industrial Surfactants: An International Guide to More Than 16000 Products by Tradename, Application, Composition and Manufacturer. New York.: Routledge, 2019. 924 p.
  5. Рогожников Д.А. // Цветные металлы. 2020. № 8. С. 11. Rogozhnikov D.A. // Non-ferrous metals. 2020. № 8. P. 11.
  6. Луговицкая Т.Н., Улитко М.В., Козлова Н.С. и др. // Журн. физ. химии. 2023. Т. 97. № 3. С. 447. Lugovitskaya T.N., Ulitko M.V., Kozlova N.S. et al. // Rus. J. Phys. Chem. A. 2023. V. 97. № 3. P. 534.
  7. Lugovitskaya T.N., Kolmachikhina E.B. // Biomacromolecules. 2021. V. 22. № 8. P. 3323.
  8. Lugovitskaya T., Rogozhnikov D. // Langmuir. 2023. V. 39. № 16. P. 5738.
  9. Jankola W.A. // Hydrometallurgy. 1995. № 39. P. 63.
  10. Owusu G., Dreisinger D.B., Peters E. // Hydrometallurgy. 1995. № 38. P. 315.
  11. Gonçalves S., Ferra J., Paiva N. et al. // Polymers. 2021. V. 13. № 23. P. 4196.
  12. Subramanian S., Øye G. // Colloid. Polym. Sci. 2021. V. 299. № 7. P. 1223.
  13. Qiu X., Kong Q, Zhou M., Yang D. // J. Phys. Chem. B. 2010. V. 114. № 48. P. 15857.
  14. Ge Y., Li D., Li Z. // BioRes. 2014. V. 9. № 4. P. 7119.
  15. Li B., Ouyang X.P. // Adv. Mat. Res. 2012. V. 554. P. 2024.
  16. Kontturi A.-K. // J. Chem. Soc., Faraday Trans. 1988. V. 84. № 11. P. 4043.
  17. Lugovitskaya T.N., Naboychenko S.S. // Colloids Surf. A Physicochem. Eng. Asp. 2020. V. 602. P. 125127.
  18. De R., Ray D., Das B. // RSC Advances. 2015. V. 5. № 68. P. 54890.
  19. Mafé S., Manzanares J., Kontturi A.K., Kontturi K. // Bioelectrochem. Bioenerg. 1995. V. 38 № 2. P. 367.
  20. Ouyang X., Deng Y., Qian Y. et al. // Biomacromolecules. 2011. V. 12. № 9. P. 3313.
  21. Yang D., Qiu X., Pang Y., Zhou M. // J. Dispers. Sci. Technol. 2008. V. 29. № 9. P. 1296.
  22. Tang Q., Zhou M., Yang D., Qiu X. // J. Polym. Res. 2015. V. 22. № 4. P. 1.
  23. Закис Г.Ф., Можейко Л.Н., Телышева Г.М. Методы определения функциональных групп лигнина. Рига: Зинатне, 1975. 217 с.
  24. Chernysheva M.G., Ivanov R.A., Soboleva O.A., Badun G.A. // Colloids Surf. A. 2013. V. 436. P. 1121.
  25. Khan H., Seddon J.M., Law R.V. et al. J. Colloid Interface Sci. 2019. V. 538. P. 75.
  26. Paul B.C., Islam S.S., Ismail K. // J. Phys. Chem. B. 1998. V. 102. P. 7807.
  27. Shah S.S., Khan A.M. // J. Chem. Society of Pakistan. 2011. V. 30. № 6. P. 186.
  28. Zhang X., Jackson J.K., Burt H.M. // J. Biochem. Biophys. Methods. 1996. V. 31. № 3–4. P. 145.
  29. Fuguet E., Ràfols C., Rosés M., Bosch E. // Anal. Chim. Acta. 2005. V. 548. № 1–2. P. 95.
  30. Wołowicz A., Staszak K. // J. Mol. Liq. 2020. V. 299. P. 112170.
  31. Dey J., Ismail K.J. Colloid Interface Sci. 2012. V. 378. № 1. P. 144.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (108KB)
3.

Baixar (19KB)
4.

Baixar (62KB)
5.

Baixar (74KB)
6.

Baixar (49KB)

Declaração de direitos autorais © Т.Н. Луговицкая, Л.М. Данилин, Д.А. Рогожников, С.В. Мамяченков, 2023