Моделирование адсорбции лития в 4H–SiC, переноса электронов и термодинамических функций соединений системы Si–C–Li

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Используя теорию функционала плотности (DFT) исследованы адсорбционные, электронные и термодинамические свойства 2×2×1 и 3×3×1 суперъячеек бинарных соединений AnBm = 4H–SiC , a – Li2C2, LinSim) системы Si–C–Li. Установлено, что теоретическая емкость гексагонального политипа 4H–SiC, больше, чем у графита (370 мА⋅ч/г), используемого в качестве анодного материала для литий-ионных аккумуляторов. Кристаллические соединения AnBm обладают электронной проводимостью. При DFT-расчетах использовали обменно-корреляционный функционал в рамках обобщенного градиентного приближения (GGA PBE). Рассчитаны параметры кристаллической структуры, энергия адсорбции адатома Liads на подложке 4H–SiC, электронная зонная структура и термодинамические свойства суперъячеек соединений AnBm . Определены термодинамически выгодное расположение Liads и стабильная конфигурация суперъячеек 4H–SiCads>. Проведены DFT-расчеты энтальпии образования соединений AnBm в тройной системе Si–C–Li. Вычисленные характеристики соединений AnBm согласуются с экспериментальными данными. Используя стандартные термодинамические потенциалы соединений AnBm и изменение энергии в твердофазных реакциях обмена между этими соединениями установлены равновесные конноды в концентрационном треугольнике Si–C–Li. Построено изотермическое сечение фазовой диаграммы Si–C–Li при 298 К.

Texto integral

Acesso é fechado

Sobre autores

S. Асадов

Министерство науки и образования Азербайджана, Институт катализа и неорганической химии им. М. Ф. Нагиева; Министерство науки и образования Азербайджана, Научно-исследовательский институт “Геотехнологические проблемы нефти, газа и химия (НИИ ГПНГХ АГУНП)”

Autor responsável pela correspondência
Email: mirasadov@gmail.com
Azerbaijão, AZ-1143 Баку; AZ-1010 Баку

S. Мустафаева

Министерство науки и образования Азербайджана, Институт физики

Email: mirasadov@gmail.com
Azerbaijão, AZ-1143 Баку

V. Лукичев

Российская академия наук, Физико-технологический институт им. К. А. Валиева

Email: salim7777@gmail.com
Rússia, 117218 Москва

Bibliografia

  1. Kimoto T., Cooper J.A. Fundamentals of Silicon Carbide Technology. Growth, Characterization, Devices, and Applications. John Wiley & Sons Singapore Pte. Ltd. 2014. 538 p. ISBN978-1-118-31352-7. https://doi.org/10.1002/9781118313534
  2. Fan Y., Deng C., Gao Y. et al. // Carbon. 2021. V. 177. P. 357. https://doi.org/10.1016/j.carbon.2021.02.095
  3. Guo J., Dong D., Wang J. et al. // Adv. Funct. Mater. 2021. 2102546. P. 1. https://doi.org/10.1002/adfm.202102546
  4. Huggins R.A. Advanced Batteries – Materials Science Aspects. 1st ed., Science+Business Media, LLC. New York. 2009. 474 p. ISBN-13: 978-0387764238
  5. Drüe M., Kozlov A., Seyring M. et al. // J. Alloys Compd. 2015. S0925838815309312. P. 1. https://doi.org/10.1016/j.jallcom.2015.08.235
  6. Liang S.-M., Drüe M., Kozlov A. et al. // Ibid. 2017. V. 698. P. 743. https://doi.org/10.1016/j.jallcom.2016.12.271
  7. Drüe M., Liang S.-M., Seyring M. et al. // Int. J. Mater. Res. 2017. V. 108. No 11. 146.111559. P. 933. https://doi.org/10.3139/146.111559
  8. He X., Tang A., Li Y., Zhang Y. et al. // Appl. Surf. Sci. 2021. V. 563. 150269. P. 1. https://doi.org/10.1016/j.apsusc.2021.150269
  9. Vasilevskiy K., Wright N.G. Ch. 1. In book: Advancing Silicon Carbide Electronics Technology II. Materials Research Foundations. 2020. V. 69. P. 1. https://doi.org/10.21741/9781644900673-1
  10. Kong L., Chai C., Song Y. et al. // AIP Advances. 2021. V. 11. 045107. P. 1. https://doi.org/10.1063/5.0044672
  11. Petersen R.J., Thomas S.A., Anderson K.J. et al. // J. Phys. Chem. C. 2022. P. 1. https://doi.org/10.1021/acs.jpcc.2c03948
  12. Ruschewitz U., Pöttgen R. // Z. Anorg. Allg. Chem. 1999. V. 625. No 10. P. 1599. https://doi.org/10.1002/(sici)1521-3749(199910)625:10<1599:: aid-zaac1599>3.0.co;2-j
  13. Kozlov A., Seyring M., Drüe M., et // J. Mater. Res. 2013. V. 104. No 11. P. 1066. https://doi.org/10.3139/146.110960
  14. Johanna N., Sumit K., Peter L. et al. // J. Chem. Phys. 2012. V. 137. No 22. 224507. P. 1. https://doi.org/10.1063/1.4770268
  15. Tian N., Gao Y., Li Y. et al. // Angew. Chem. Int. Ed. 2016. V. 5. No 2. P. 644. https://doi.org/10.1002/anie.201509083
  16. Ali S. // Madridge J. Nanotechnol Nanosci. 2017. V.2. No 1. P. 73. https://doi.org/10.18689/mjnn-1000113
  17. Gu M., He Y., Zheng J., Wang C. // Nano Energy. 2015. S221128551500350X. P. 1. https://doi.org/10.1016/j.nanoen.2015.08.025
  18. Guo J., Dong D., Wang J. et al. // Adv. Funct. Mater. 2021. P. 1. https://doi.org/10.1002/adfm.202102546
  19. Obrovac M.N., Christensen L. // Electrochem. Solid-State Lett. 2004. V. 7. No 5. P. A93. https://doi.org/10.1149/1.1652421
  20. Wu H., Cui Y. // Nano Today. 2012. V. 7. No 5. P. 414. https://doi.org/10.1016/j.nantod.2012.08.004
  21. Morachevskii A.G., Demidov A.I. // Rus. J. Appl. Chem. 2015. V. 88. No 4. P. 547. https://doi.org/10.1134/S1070427215040011
  22. Wang P., Kozlov A., Thomas D. et al. // Intermetallics. 2013. V. 42. P. 137. https://doi.org/10.1016/j.intermet.2013.06.003
  23. Kim H., Chou C.-Y., Ekerdt J.G., Hwang G.S. // J. Phys. Chem. C. 2011. V. 115. P. 2514. https://doi.org/10.1021/jp1083899
  24. Chiang H.-H., Lu J.-M., Kuo C.-L. // J. Chem. Phys. 2016. V. 144. 034502. P. 1. https://doi.org/10.1063/1.4939716
  25. Chiang H.-H., Lu J.-M., Kuo C.-L. // Ibid. 2017. V. 146. No 6. 064502. P. 1. https://doi.org/10.1063/1.4975764
  26. Dębski A., Zakulski W., Major Ł. et al. // Thermochim. Acta. 2013. V. 551. P. 53. https://doi.org/10.1016/j.tca.2012.10.015
  27. Thomas D., Abdel-Hafiez M., Gruber T. // J. Chem. Thermodynamics. 2013. V. 64. P. 205. https://doi.org/10.1016/j.jct.2013.05.018
  28. Dębski A., Gąsior W., Góral A. // Intermetallics. 2012. V. 26. P. 157. https://doi.org/10.1016/j.intermet.2012.04.001
  29. Thomas D., Zeilinger M., Gruner D. et al. // J. Chem. Thermodynamics. 2015. V. 85. P. 178. https://doi.org/10.1016/j.jct.2015.01.004
  30. Taubert F., Schwalbe S., Seidel J. et al. // Int. J. Mater. Res. 2017. V. 108. 146.111550. P. 943. https://doi.org/10.3139/146.111550
  31. Thomas D., Bette N., Taubert F. et al. // J. Alloys Compd. 2017. V. 704. 0925–8388. P. 398. https://doi.org/10.1016/j.jallcom.2017.02.010
  32. Taubert F., Thomas D., Hüttl R. et al. // Ibid. 2022. V. 897. 163147. P. 898. https://doi.org/10.1016/j.jallcom.2021.163147
  33. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. // Rus. Microelectronics. 2022. V. 51. No. 2. P. 83. https://doi.org/10.1134/S1063739722010024
  34. Asadov M.M., Mustafaeva S.N., Guseinova S.S., Lukichev V.F. // Phys. Solid State. 2022. V. 64. No. 5. P. 528. https://doi.org/10.21883/0000000000
  35. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. No 18. P. 3865. https://doi.org/10.1103/physrevlett.77.3865
  36. Asadov S.M., Mustafaeva S.N., Huseinova S.S., Lukichev V.F. // Russ. J. Phys. Chem A, 2024. V. 98. No 1. P. 1. https://doi.org/10.1134/S0036024424010023
  37. Asadov M.M., Mammadova S.O., Guseinova S.S. et al. // Rus. Microelectronics. 2022. V. 51. No 6. P. 413. https://doi.org/10.1134/S1063739722700159
  38. Madelung O. Semiconductors: Data Handbook. 3rd edition. Springer-Verlag Berlin Heidelberg New Yor. 2004. 690 p. ISBN978-3-642-62332-5.
  39. He J., Song X., Xu W. et al. // Mater. Lett. 2013. V. 94. P. 176. http://dx.doi.org/10.1016/j.matlet.2012.12.045
  40. Davydov S. Yu., Posrednik O.V. // Semicond. 2020. V. 54. Is. 11. P. 1197.
  41. Zhang Y.J., Yin Z.-P., Su Y., Wang D.-J. // Chin. Phys. B. 2018. V. 27. No 4. 047103.
  42. Zhao G.L., Bagayoko D. // New J. Phys. 2000. V. 2. P. 1. http://www.njp.org/
  43. CRC Handbook of Chemistry and Physics. D.R. Lide. Ed. CRC Press, Boca Raton, FL. 2005. http://www.hbcpnetbase.com
  44. Braga M.H., Dębski A., Gąsior W. // J. Alloys Compd. 2014. V. 616. P. 581. http://dx.doi.org/10.1016/j.jallcom.2014.06.212
  45. Morris A.J., Grey C.P., Pickard C.J. // arXiv: 1402.6233v1 [cond-mat.mtr-sci] 25 Feb 2014. P. 1.
  46. Asadov M.M., Kuli-zade E.S. // J. Alloys Compd. 2020. V. 842. 155632. https://doi.org/10.1016/j.jallcom.2020.155632

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Atomic structure of 2×2×1 supercells of 4H–SiC (a) and 4H–SiC (b).

Baixar (82KB)
3. Fig. 2. DFT-GGA-PBE calculated electronic band structure (a), total DOS (b) and partial density of states PDOS (c) of 3×3×1 supercells based on 4H–SiC and SW–SiC–Liads (d). PDOS show individual contributions of each atomic orbital without taking into account the spin-orbit coupling effect. 1 – total DOS, 2 – PDOS for Si, 3 – PDOS for C, 4 – PDOS for Li. The Fermi level is set to zero eV.

Baixar (407KB)
4. Fig. 3. Total (DOS) and partial electron density of states (PDOS) of a – Li₂C₂ with orthorhombic syngony: a) – 1 – DOS, 2 – PDOS C2s-2p-state, 3 – PDOS Li 1s-state; b) – DOS of a – Li₂C₂. The Fermi level is set to zero eV.

Baixar (149KB)
5. Fig. 4. Electron density of states of the DOS compound LiSi. 1 – Si 3s-state, 2 – Si 3p-state. The Fermi level is set to zero eV.

Baixar (90KB)
6. Fig. 5. Isothermal section of the Si–C–Li system at 298 K, constructed on the basis of DFT-GGA-PBE calculations taking into account known thermodynamic and experimental data.

Baixar (133KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024