Selective Hydrogenation of Pyridine and Derivatives of It on Bimetallic Catalysts Modified with Chitosan

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A study is performed of the catalytic properties of bimetallic nanoparticles based on palladium and a base metal (silver or copper) supported on alumina modified with chitosan in the selective hydrogenation of pyridine and derivatives of it with the formation of piperidine and derivatives of it. It is shown that the effect of increasing the activity of bimetallic nanoparticles is due to the small size of particles (2–3 nm), compared to the monometallic palladium catalyst. It is established that the conversion of pyridine reaches 99% with 99% selectivity toward piperidine under mild conditions (60°C; H2 pressure, 70 atm).

作者简介

A. Kustov

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia; 119991, Moscow, Russia

S. Dunaev

Moscow State University

Email: kyst@list.ru
119991, Moscow, Russia

E. Finashina

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kyst@list.ru
119991, Moscow, Russia

参考

  1. Beletskaya I.P., Kustov L.M. // Russ. Chem. Rev. 2010. V. 79 (6). P. 441.
  2. Zeolites and Zeolite-like Materials. Ed. by B.F. Sels, L.M. Kustov. 2016. P. 1–459.
  3. Kustov L.M., Beletskaya I.P. // Ross. Khim. Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva) 2004. V. 48 (6). P. 3.
  4. Shesterkina A.A., Kustov L.M., Strekalova A.A. et al. // Catal. Sci. Technol. 2020. V. 10 (10). P. 3160.
  5. Chernikova E.A., Glukhov L.M., Krasovskiy V.G. et al. // Russ. Chem. Rev. 2015. V. 84 (8). P. 875.
  6. Kalenchuk A.N., Bogdan V.I., Dunaev S.F. et al. // Fuel Proc. Technol. 2018. V. 169. P. 94.
  7. Sung J.S., Choo K.Y., Kim T.H. et al. // Int. J. Hydrogen Energy 2008. V. 33 (11). P. 2721.
  8. Kalenchuk A., Bogdan V., Dunaev S. et al. // Fuel 2020. V. 280. P. 118625.
  9. Tarasov A.L., Isaeva V.I., Tkachenko O.P. et al. // Fuel Proc. Technol. 2018. V. 176. P. 101.
  10. Tursunov O., Kustov L., Tilyabaev Z. // J. Petroleum Sci. Eng. 2019. V. 180. P. 773.
  11. Redina E.A., Vikanova K.V., Kapustin G.I. et al. // Eur. J. Org. Chem. 2019. V. 2019 (26). P. 4159.
  12. Tkachenko O.P., Kustov L.M., Nikolaev S.A. et al. // Topics Catal. 2009. V. 52 (4). P. 344.
  13. Redina E., Greish A., Novikov R. et al. // Appl. Catal. A: General 2015. V. 491. P. 170.
  14. Bykov A., Matveeva V., Sulman M. et al. // Catal. Today. 2009. V. 140 (1–2). P. 64.
  15. Redina E.A., Kirichenko O.A., Greish A.A. et al. // Catal. Today. 2015. V. 246. P. 216.
  16. Isaeva V.I., Tkachenko O.P., Afonina E.V. et al. // Micropor. Mesopor. Mater. 2013. V. 166. P. 167.
  17. ulman E.M., Matveeva V.G., Doluda V.Yu. et al. // Appl. Catal. B: Environmental 2010. V. 94 (1–2). P. 200
  18. Tursunov O., Kustov L., and Kustov A. // Oil and Gas Sci. Technol. 2017. V. 72 (5). P. 30.
  19. Tursunov O., Kustov L., and Tilyabaev Z. // J. Taiwan Inst. Chem. Engineers 2017. V. 78. P. 416.
  20. Chen F., Li W., Sahoo B. et al. // Angew. Chemie Int. Ed. 2018. V. 57 (44). P. 14488.
  21. Kokane R., Corre Y., Kemnitz E. et al. // New J. Chem. 2021. V. 45. P. 19572.
  22. Yu X., Nie R., Zhang H. et al. // Micropor. Mesopor. Mater. 2018. V. 256. P. 10.
  23. Hattori T., Ida T., Tsubone A. et al. // Eur. J. Org. Chem. 2015. V. 2015 (11). P. 2492.
  24. Beckers N.A., Huynh S., Zhang X. et al. // ACS Catal. 2012. V. 2 (8). P. 1524.
  25. Buil M.L., Esteruelas M.A., Niembro S. et al. // Organometallics 2010. V. 29 (19). P. 4375.
  26. Maegawa T., Akashi A., Yaguchi K. et al. // Chem. A. Eur. J. 2009. V. 15 (28). P. 6953.
  27. Irfan M., Petricci E., Glasnov T.N. et al. // Eur. J. Org. Chem. 2009. V. 9. P. 1327.
  28. Barwinski B., Migowski P., Gallou F. et al. // J. Flow Chem. 2017. V. 7 (2). P. 41.
  29. Kirichenko O.A., Redina E.A., Davshan N.A. et al. // Appl. Catal. B: Environmental 2013. V. 134–135. P. 123.
  30. Kustov L.M. // Russ. J. Phys. Chem A 2015. V. 89 (11). P. 2006.
  31. Mamonov N.A., Fadeeva E.V., Grigoriev D.A. et al. // Russ. Chem. Rev. 2013. V. 82 (6). P. 567.
  32. Kustov A.L., Tkachenko O.P., Kustov L.M. et al. // Environment Int. 2011. V. 37 (6). P. 1053.
  33. Mikhailov M.N., Kustov L.M., and Kazansky V.B. // Catal. Lett. 2008. V. 120 (1–2). P. 8.
  34. Ivanov A.V., Koklin A.E., Uvarova E.B. et al. // Phys. Chem. Chem. Phys. 2003. V. 5 (20). P. 4718–4723.
  35. Kumar N., Masloboischikova O.V., Kustov L.M. et al. // Ultrasonics Sonochem. 2007. V. 14 (2). P. 122.
  36. Ivanov A.V., Kustov L.M. // Ross. Khim. Zhurnal (Zhurnal Rossijskogo Khimicheskogo Obshchestva Im. D.I. Mendeleeva). 2000. V. 44 (2). P. 21.
  37. Vorob'eva M.P., Greish A.A., Ivanov A.V. et al. // Appl. Catal. A: General. 2000. V. 199 (2). P. 257.
  38. Khodakov A.Yu., Kustov L.M., Kazansky V.B. et al. // J. Chem. Soc. Faraday Trans., 1993. V. 89 (9). P. 1393.
  39. Kanazirev V., Dimitrova R., Price G.L. et al. // J. Molec. Catal. 1991. V. 70 (1). P. 111.
  40. Kramareva N.V., Stakheev A.Yu., Tkachenko O.P. et al. // J. Molec. Catal. A: Chemical. 2004. V. 209 (1–2). P. 97.

补充文件

附件文件
动作
1. JATS XML

版权所有 © А.Л. Кустов, С.Ф. Дунаев, Е.Д. Финашина, 2023