Potassium–Sodium Ceramics Modified with Metal Oxide Additives: Synthesis, Microstructure, and Properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Single phase ceramic samples of new compounds (1 − x)(K0.5Na0.5)NbO3−xLa(Ag0.5Sb0.5)O3 (x = 0–0.15), modified by metal oxide additives ZnO, CuO, and MnO2, are prepared via a solid state reaction. The crystal structure, microstructure, and dielectric and ferroelectric properties of the samples are studied. It is established that a phase with a perovskite structure and an orthorhombic unit cell formed in each sample. Ferroelectric phase transitions are confirmed via dielectric spectroscopy. Generation of the second harmonic is observed, along with a drop in the temperature of transitions from the ferroelectric orthorhombic phase to the ferroelectric tetragonal phase, and then to the cubic paraelectric phase.

作者简介

G. Kaleva

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

E. Politova

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

A. Mosunov

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

S. Stefanovich

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

N. Sadovskaya

Institute of Crystallography, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kaleva@nifhi.ru
119333, Moscow, Russia

参考

  1. Gupta V., Sharma M., and Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227.
  2. Sodano H.A., Henry A., Inman D.J., and Park G. // Ibid. 2005. V. 16. P. 799.
  3. Sodano H.A., Park G., and Inman D.J. Estimation of electric charge output for piezoelectric energy harvesting // Strain. 2004. V. 40. P. 49.
  4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. Москва: Химия, 1985, 256 с.
  5. Eitel R.E., Randall C.A., Shrout T.R., and Park S.-E. // Jpn. J. Appl. Phys. 2002. V. 41. Part 1. P. 2099.
  6. Eitel R.E., Zhang S.J., Shrout T.R. et al. // J. Appl. Phys. 2004. V. 96. P. 2828.
  7. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Letters. 2005. V. 86. P. 262904.
  8. Iniguez J., Vandebilt D., and Bellaiche L. // Phys. Rev. B. 2003. V. 67. P. 224I07–1.
  9. Maeder M.D., Damjanovic D., and Setter N. // J. Electroceram. 2004. V. 13. P. 385.
  10. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84.
  11. Takenaka T., Nagata H., Hiruma Y. et al. // J. Electroceram. 2007. V. 19. P. 259.
  12. Takenaka T., Nagata H., and Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787.
  13. Rödel J., Jo W., Seifert T.P., Anton E.-M. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153.
  14. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049.
  15. Zhen Y.H. and Li J.F. // J. Am. Ceram. Soc. 2006. V. 89. P. 3669.
  16. Bernard J., Bencan A., Rojac T. et al. // Ibid. 2008. V. 91. P. 2409.
  17. Guo Y., Kakimoto K.-I., and Ohsato H. // Appl. Phys. Lett. 2004. V. 85. P. 4121.
  18. Ming B.Q., Wang J.F., Qi P., and Zang G.Z. // J. Appl. Phys. 2007. V. 101. P. 054103.
  19. Wang K. and Li J.F. // Adv. Funct. Mater. 2010. V. 20. P. 1924.
  20. Singh K.C., Jiten C., Laishram R. et al. // J. Alloy. Compd. 2010. V. 496. P. 717.
  21. Zhao P., Zhang B. P., and Li J.F. // J. Am. Ceram. Soc. 2008. V. 91. P. 1690.
  22. Jiang X.P., Yang Q., Yu Z.D. et al. // J. Alloy Compd. 2010 V. 493. P. 276.
  23. Lin D., Kwok K.W., and Chan H.L.W. // J. Appl. Phys. 2009. V. 106. P. 034102.
  24. Yoon M.S., Khansur N.H., Lee W.J. et al. // J. Advanced Materials Research. 2011. V. 287–290. P. 801.
  25. Sun X., Chen J., Yu R. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 130.
  26. Sun X., Deng J., Sun C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 8. P. 1853.
  27. Hao J., Xu Z., Chua R. et al. // Materials Chemistry and Physics. 2009. V. 118. Issue 1. P. 229.
  28. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. of Advanced Dielectrics. 2018. V. 8. № 1. P. 1850004.
  29. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45.
  30. Kim J.-W., Ryu J., Hahn B.-D. et al. // J. of the Korean Physical Society. 2013. V. 63. № 12. P. 2296.
  31. Политова Е.Д., Калева Г.М., Мосунов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156.
  32. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Diffusion Foundations. 2020. V. 27. P. 90.
  33. Kumar R., Kumar A., Singh S. // Sustainable Energy Fuels. 2018. V. 2. P. 2698.
  34. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56.
  35. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Там же. 2018. Т. 37. № 1. С. 76.
  36. Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012. 291 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (146KB)
3.

下载 (1MB)
4.

下载 (142KB)

版权所有 © Г.М. Калева, Е.Д. Политова, А.В. Мосунов, С.Ю. Стефанович, Н.В. Садовская, 2023