Potassium–Sodium Ceramics Modified with Metal Oxide Additives: Synthesis, Microstructure, and Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Single phase ceramic samples of new compounds (1 − x)(K0.5Na0.5)NbO3−xLa(Ag0.5Sb0.5)O3 (x = 0–0.15), modified by metal oxide additives ZnO, CuO, and MnO2, are prepared via a solid state reaction. The crystal structure, microstructure, and dielectric and ferroelectric properties of the samples are studied. It is established that a phase with a perovskite structure and an orthorhombic unit cell formed in each sample. Ferroelectric phase transitions are confirmed via dielectric spectroscopy. Generation of the second harmonic is observed, along with a drop in the temperature of transitions from the ferroelectric orthorhombic phase to the ferroelectric tetragonal phase, and then to the cubic paraelectric phase.

About the authors

G. M. Kaleva

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

E. D. Politova

Semenov Institute of Chemical Physics

Email: kaleva@nifhi.ru
119991, Moscow, Russia

A. V. Mosunov

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

S. Yu. Stefanovich

Faculty of Chemistry, Moscow State University

Email: kaleva@nifhi.ru
119991, Moscow, Russia

N. V. Sadovskaya

Institute of Crystallography, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences

Author for correspondence.
Email: kaleva@nifhi.ru
119333, Moscow, Russia

References

  1. Gupta V., Sharma M., and Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227.
  2. Sodano H.A., Henry A., Inman D.J., and Park G. // Ibid. 2005. V. 16. P. 799.
  3. Sodano H.A., Park G., and Inman D.J. Estimation of electric charge output for piezoelectric energy harvesting // Strain. 2004. V. 40. P. 49.
  4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. Москва: Химия, 1985, 256 с.
  5. Eitel R.E., Randall C.A., Shrout T.R., and Park S.-E. // Jpn. J. Appl. Phys. 2002. V. 41. Part 1. P. 2099.
  6. Eitel R.E., Zhang S.J., Shrout T.R. et al. // J. Appl. Phys. 2004. V. 96. P. 2828.
  7. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Letters. 2005. V. 86. P. 262904.
  8. Iniguez J., Vandebilt D., and Bellaiche L. // Phys. Rev. B. 2003. V. 67. P. 224I07–1.
  9. Maeder M.D., Damjanovic D., and Setter N. // J. Electroceram. 2004. V. 13. P. 385.
  10. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84.
  11. Takenaka T., Nagata H., Hiruma Y. et al. // J. Electroceram. 2007. V. 19. P. 259.
  12. Takenaka T., Nagata H., and Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787.
  13. Rödel J., Jo W., Seifert T.P., Anton E.-M. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153.
  14. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049.
  15. Zhen Y.H. and Li J.F. // J. Am. Ceram. Soc. 2006. V. 89. P. 3669.
  16. Bernard J., Bencan A., Rojac T. et al. // Ibid. 2008. V. 91. P. 2409.
  17. Guo Y., Kakimoto K.-I., and Ohsato H. // Appl. Phys. Lett. 2004. V. 85. P. 4121.
  18. Ming B.Q., Wang J.F., Qi P., and Zang G.Z. // J. Appl. Phys. 2007. V. 101. P. 054103.
  19. Wang K. and Li J.F. // Adv. Funct. Mater. 2010. V. 20. P. 1924.
  20. Singh K.C., Jiten C., Laishram R. et al. // J. Alloy. Compd. 2010. V. 496. P. 717.
  21. Zhao P., Zhang B. P., and Li J.F. // J. Am. Ceram. Soc. 2008. V. 91. P. 1690.
  22. Jiang X.P., Yang Q., Yu Z.D. et al. // J. Alloy Compd. 2010 V. 493. P. 276.
  23. Lin D., Kwok K.W., and Chan H.L.W. // J. Appl. Phys. 2009. V. 106. P. 034102.
  24. Yoon M.S., Khansur N.H., Lee W.J. et al. // J. Advanced Materials Research. 2011. V. 287–290. P. 801.
  25. Sun X., Chen J., Yu R. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 130.
  26. Sun X., Deng J., Sun C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 8. P. 1853.
  27. Hao J., Xu Z., Chua R. et al. // Materials Chemistry and Physics. 2009. V. 118. Issue 1. P. 229.
  28. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. of Advanced Dielectrics. 2018. V. 8. № 1. P. 1850004.
  29. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45.
  30. Kim J.-W., Ryu J., Hahn B.-D. et al. // J. of the Korean Physical Society. 2013. V. 63. № 12. P. 2296.
  31. Политова Е.Д., Калева Г.М., Мосунов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156.
  32. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Diffusion Foundations. 2020. V. 27. P. 90.
  33. Kumar R., Kumar A., Singh S. // Sustainable Energy Fuels. 2018. V. 2. P. 2698.
  34. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56.
  35. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Там же. 2018. Т. 37. № 1. С. 76.
  36. Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012. 291 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (146KB)
3.

Download (1MB)
4.

Download (142KB)

Copyright (c) 2023 Г.М. Калева, Е.Д. Политова, А.В. Мосунов, С.Ю. Стефанович, Н.В. Садовская