Stability of Colloidal Silver Sulfide Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stable colloidal solutions of silver sulfide Ag2S quantum dots of various sizes were prepared by hydrochemical bath deposition from low-concentration aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate. The Ag2S quantum dot sizes determined by dynamic light scattering (DLS) were 2–3 to 28–30 nm. The great negative values of the measured ζ-potentials of the colloidal solutions and the small changes in ζ-potential and quantum dot sizes upon the long-term storage of the solutions indicate their stability across time.

About the authors

S. I. Sadovnikov

Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia

References

  1. Садовников С.И., Ремпель А.А., Гусев А.И. // Успехи химии. 2018. Т. 87. № 4. С. 303. https://doi.org/10.1070/RCR4803locatt=label:RUSSIAN
  2. Meherzi-Maghraoui H., Dachraoui M., Belgacem S. et al. // Thin Solid Films. 1996. V. 288. P. 217. https://doi.org/10.1016/S0040-6090(96)08811-6
  3. Nasrallah T.B., Dlala H., Amlouk M. et al. // Synth. Met. 2005. V. 151. P. 225. https://doi.org/10.1016/j.synthmet.2005.05.005
  4. Karashanova D., Nihtianova D., Starbova K., Starbov N. // Solid State Ionics. 2004. V. 171. P. 269. https://doi.org/10.1016/j.ssi.2004.04.020
  5. El-Nahass M.M., Farag A.A.M., Ibrahim E.M., Abd-El-Rahman S. // Vacuum. 2004. V. 72. P. 453. https://doi.org/10.1016/j.vacuum.2003.10.005
  6. Prabhune V.B., Shinde N.S., Fulari V.J. // Appl. Surf. Sci. 2008. V. 255. Part 1. P. 1819. https://doi.org/10.1016/j.apsusc.2008.06.022
  7. Terabe K., Hasegawa T., Nakayama T., Aono M. // Nature. 2005. V. 433. P. 47. https://doi.org/10.1038/nature03190
  8. Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
  9. Xu Z., Bando Y., Wang W. et al. // ACS Nano. 2010. V. 4. P. 2515. https://doi.org/10.1021/nn100483a
  10. Gubicza A., Csontos M., Halbritter A., Mihály G. // Nanoscale. 2015. V. 7. P. 4394. https://doi.org/10.1039/C5NR00399G
  11. Jiang P., Zhu C.-N., Zhang Z.-L. et al. // Biomaterials. 2012. V. 33. P. 5130. https://doi.org/10.1016/j.biomaterials.2012.03.059
  12. Li C., Zhang Y., Wang M. et al. // Biomaterials. 2014. V. 35. P. 393. https://doi.org/10.1016/j.biomaterials.2013.10.010
  13. Yang H.-Y., Zhao Y.-W., Zhang Z.-Y. et al. // Nanotechnology. 2013. V. 24. P. 055706. https://doi.org/10.1088/0957-4484/24/5/055706
  14. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rem-pel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. https://doi.org/10.1016/j.cplett.2015.11.004
  15. Садовников С.И. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1116. https://doi.org/10.1134/S0044457X19100118
  16. Садовников С.И. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1434. https://doi.org/10.31857/S0044457X20100177
  17. Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1975. С. 511.
  18. Ерёмин И.И. // Словарь нанотехнологических терминов / Под ред. Калюжного С.В. М.: Физматлит, 2010. С. 399.
  19. Matusiak J., Grządka E. // Annal. Univer. Mariae Curie-Sklodowska (Lublin, Polonia). 2017. V. 52. P. 34. https://doi.org//10.17951/aa.2017.72.1.33
  20. Садовников С.И., Кузнецова Ю.В., Ремпель А.А. // Неорган. материалы. 2014. Т. 50. № 10. С. 1049. https://doi.org//10.7868/S0002337X14100145
  21. Sadovnikov S.I., Kuznetsova Yu.V., Rempel A.A. // Nano-Struct. Nano-Objects. 2016. V. 7. P. 81. https://doi.org/10.1016/j.nanoso.2016.06.004
  22. Kuznetsova Yu.V., Rempel S.V., Popov I.D. et al. // Colloid. Surf. A: Physicochem. Eng. Aspects. 2017. V. 520. P. 369. https://doi.org/10.1016/j.colsurfa.2017.02.013
  23. Воронцова Е.С., Кузнецова Ю.В., Ремпель С.В. // Физика. Технологии. Инновации: cб. статей VII Междунар. мол. научн. конф. (Екатеринбург, 18–22 мая 2020 г.). Екатеринбург: УрФУ, 2020. С. 339. http://hdl.handle.net/10995/91864
  24. Vorontsova E.S., Kuznetsova Yu.V., Rempel S.V. // AIP Conf. Proc. 2022. V. 2466. P. 030006. https://doi.org/10.1063/5.0088671
  25. Rempel S.V., Kuznetsova Yu.V., Rempel A.A. // ACS Omega. 2020. V. 5. P. 16826. https://doi.org/10.1021/acsomega.0c01994
  26. Kozhevnikova N.S., Vorokh A.S., Shalaeva E.V. et al. // J. Alloys Comp. 2017. V. 712. P. 418. https://doi.org/10.1016/j.jallcom.2017.04.112
  27. Blochet B., Joaquina K., Blum L. et al. // Optica. 2019. V. 6. P. 1554. https://doi.org/10.1364/optica.6.001554
  28. Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. P. 3391. https://doi.org/10.1021/j100214a025
  29. X'Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
  30. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 12466. https://doi.org/10.1039/c5cp00650c
  31. Hunter R.J. Zeta Potential in Colloid Science: Principles and Applications. London: Academic, 1988. 386 p.
  32. Heurtault B., Saulnier P., Pech B. et al. // Biomaterials. 2003. V. 24. P. 4283. https://doi.org/10.1016/S0142-9612(03)00331-4
  33. Zhang Y., Liu Y., Li C. et al. // J. Phys. Chem. C. 2014. V. 118. P. 4918. https://doi.org/10.1021/jp501266d
  34. Junod P. // Helv. Phys. Acta. 1959. V. 32. P. 567.
  35. Junod P., Hediger H., Kilchör B., Wullschleger J. // Philos. Mag. B. 1977. V. 36. P. 941. https://doi.org/10.1080/14786437708239769
  36. Wu Q., Zhou M., Gong Y. et al. // Catal. Sci. Technol. 2018. V. 8. P. 5225. https://doi.org//10.1039/c8cy01522h

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (1MB)
4.

Download (160KB)
5.

Download (89KB)
6.

Download (216KB)

Copyright (c) 2023 С.И. Садовников