Preparation of a сloso-Dodecaborate Anion Conjugate with Ethyl Glycinate and Study of Its Biodistribution in a B16f10 Melanoma Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for the synthesis of amidine-closo-dodecaborate based on glycine ethyl ester in the form of sodium salt solvate of high purity and constant composition was proposed in this work. The structure of the obtained solvate was confirmed by X-ray analysis of single crystal. In addition, total and acute toxicity as well as biodistribution in laboratory mice with B16F10 melanoma were determined for the synthesized conjugate Na[B12H11NH=C(NHCH2COOC2H5)CH3].

Full Text

Restricted Access

About the authors

M. N. Ryabchikova

National Research University Higher School of Economics

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 101000

A. V. Nelyubin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

A. V. Smirnova

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522

Y. A. Finogenova

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522

V. A. Skribitsky

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522; Moscow, 115409

K. E. Shpakova

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522; Moscow, 115409

A. S. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

A. P. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

A. A. Lipengolts

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522; Moscow, 115409

E. Yu. Grigorieva

Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 115522

K. Y. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Qi B., Wu C., Li X. et al. // ChemCatChem. 2018. V. 10. № 10. P. 2285. https://doi.org/10.1002/cctc.201702011
  2. Li Y.-T., Zhang S.-H., Zheng G.-P. et al. // Appl. Catal. A. 2020. V. 595. P. 117511. https://doi.org/10.1016/j.apcata.2020.117511
  3. Wang Z., Liu Y., Zhang H. et al. // J. Colloid Interface Sci. 2020. V. 566. P. 135. https://doi.org/10.1016/j.jcis.2020.01.047
  4. Emin Kilic M., Jena P. // J. Phys. Chem. Lett. 2023. V. 14. № 39. P. 8697. https://doi.org/10.1021/acs.jpclett.3c02222
  5. Shakirova O.G., Lavrenova L.G., Bogomyakov A.S. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 786. https://doi.org/10.1134/S003602361507013X
  6. Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 249. https://doi.org/10.1016/j.ica.2018.04.059
  7. Lavrenova L.G., Shakirova O.G. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 690. https://doi.org/10.1134/S0036023623600764
  8. Duchêne L., Remhof A., Hagemann H. et al. // Energy Stor. Mater. 2020. V. 25. № August. P. 782. https://doi.org/10.1016/j.ensm.2019.08.032
  9. Duchêne L., Kühnel R.S., Rentsch D. et al. // Chem. Commun. 2017. V. 53. № 30. P. 4195. https://doi.org/10.1039/c7cc00794a
  10. Duchêne L., Lunghammer S., Burankova T. et al. // Chem. Mater. 2019. V. 31. № 9. P. 3449. https://doi.org/10.1021/acs.chemmater.9b00610
  11. Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
  12. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  13. Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
  14. Las’kova Yu.N., Serdyukov A.A., Sivaev I.B. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 621. https://doi.org/10.1134/S0036023623600612
  15. Tsurubuchi T., Shirakawa M., Kurosawa W. et al. // Cells. 2020. V. 9. № 5. 1277. https://doi.org/10.3390/cells9051277
  16. Kusaka S., Hattori Y., Uehara K. et al. // Appl. Radiat. Isot. 2011. V. 69. № 12. P. 1768. https://doi.org/10.1016/j.apradiso.2011.03.042
  17. Seneviratne D.S., Saifi O., Mackeyev Y. et al. // Cells. 2023. V. 12. № 10. P. 1398. https://doi.org/10.3390/cells12101398
  18. Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. P. 1. https://doi.org/10.3389/fchem.2021.619052
  19. Matsumura A., Asano T., Hirose K. et al. // Cancer Biother. Radiopharm. 2023. V. 38. № 3. P. 201. https://doi.org/10.1089/cbr.2022.0056
  20. Dymova M.A., Taskaev S.Y., Richter V.A. et al. // Cancer Commun. 2020. V. 40. № 9. P. 406. https://doi.org/10.1002/cac2.12089
  21. International atomic energy agency. Advances in Boron Neutron Capture Therapy, 2023. https://www.iaea.org/publications/15339/advances-in-boron-neutron-capture-therapy (accessed December 12, 2023).
  22. Vorobyeva M.A., Dymova M.A., Novopashina D.S. et al. // Int. J. Mol. Sci. 2021. V. 22. № 14. P. 7326. https://doi.org/10.3390/ijms22147326
  23. Kanygin V., Zaboronok A., Taskaeva I. et al. // J. Fluoresc. 2021. V. 31. № 1. P. 73. https://doi.org/10.1007/s10895-020-02637-5
  24. Evamarie Hey-Hawkins C.V.T. (Eds.) Boron-Based Compounds: Potential and Emerging Applications in Medicine. John Wiley & Sons Ltd, 2018. 496 p.
  25. Zaulet A., Nuez M., Sillanpää R. et al. // J. Organomet. Chem. 2021. V. 950. P. 121997. https://doi.org/10.1016/j.jorganchem.2021.121997
  26. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 11. № 8. P. 977. https://doi.org/10.1039/b715363e
  27. Prikaznov A.V., Shmalapos A. V., Sivaev I.B. et al. // Polyhedron. 2011. V. 30. № 9. P. 1494. https://doi.org/10.1016/j.poly.2011.02.055
  28. Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
  29. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
  30. Nelyubin A.V., Selivanov N.A., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1390. https://doi.org/10.1134/S0036023621090096
  31. Nelyubin A.V., Sokolov M.S., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1751. https://doi.org/10.1134/S003602362260109X
  32. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1776. https://doi.org/10.1134/S0036023622601106
  33. APEX2. Version 2.1-0. Bruker AXS Inc., in: Madison, Wisconsin, USA, 2006.
  34. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  35. Sheldrick G.M. (2008) SADABS, Version 2008/1. Bruker AXS Inc., Germany.
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  37. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / По ред. Хабриева Р.У. М.: Медицина, 2005. 20 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the isopropyl complex according to the RSA data.

Download (76KB)
3. Fig. 2. Graph of changes in boron concentration in organs and tissues after intraperitoneal conjugate administration.

Download (81KB)

Copyright (c) 2024 Russian Academy of Sciences