Preparation of high-entropy layered double hydroxides with a hydrotalcite structure

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

High-entropy hexacationic layered double hydroxides of the cationic composition MgNiCoAlFeY were obtained by five different methods: coprecipitation at constant pH, coprecipitation at constant or variable pH followed by hydrothermal treatment, microwave assisted solvothermal, hydrothermal, mechanochemical method followed by hydrothermal treatment. All samples, except for the one obtained by coprecipitation at variable pH, are phase pure, with a uniform distribution of cations. The samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, transmission electron microscopy. Thermal transformations of the samples were studied. The synthesis method affects the characteristics of the samples. The sample obtained by hydrothermal synthesis at variable pH possesses magnetic properties. The largest particles and those morphologically close to the hexagonal shape are formed by coprecipitation followed by hydrothermal treatment. The sample obtained by the microwave assisted solvothermal method is characterized by lower thermal stability.

全文:

受限制的访问

作者简介

O. Lebedeva

Belgorod State National Research University

编辑信件的主要联系方式.
Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

S. Golovin

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

E. Seliverstov

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

E. Tarasenko

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
留尼汪, Belgorod, 308015

O. Kokoshkina

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

D. Smalchenko

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

M. Yapryntsev

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
俄罗斯联邦, Belgorod, 308015

参考

  1. Yeh J.-W. // JOM. 2013. V. 65. № 12. P. 1759. https://doi.org/10.1007/s11837-013-0761-6
  2. Yeh J.-W., Chen S.-K., Lin S.-J. et al. // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299. https://doi.org/10.1002/adem.200300567
  3. Musicó B.L., Gilbert D., Ward T.Z. et al. // APL Mater. 2020. V. 8. № 4. P. 040912. https://doi.org/10.1063/5.0003149
  4. Teplonogova М.А., Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Inorg. Chem. 2022. V. 61. № 49. Р. 19817. https://doi.org/10.1021/acs.inorgchem.2c02950
  5. Cavani F., Trifirò F., Vaccari A. // Catal. Today. 1991. V. 11. № 2. Р. 173. https://doi.org/10.1016/0920-5861(91)80068-K
  6. Третьяков Ю.Д., Елисеев А.В., Лукашин А.В. // Успехи химии. 2004. Т. 73. № 9. С. 974.
  7. Mohapatra L., Parida K. // J. Mater. Chem. A. 2016. V. 4. № 28. P. 10744. https://doi.org/10.1039/C6TA01668E
  8. Zümreoglu-Karan B., Ay A.N. // Chem. Pap. 2012. V. 66. № 1. P. 1. https://doi.org/10.2478/s11696-011-0100-8
  9. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  10. Sonoyama N., Takagi K., Yoshida S. et al. // Appl. Clay Sci. 2020. V. 186. P. 105440. https://doi.org/10.1016/j.clay.2020.105440
  11. Patel R., Park J.T., Patel M. et al. // J. Mater. Chem. A. 2018. V. 6. № 1. P. 12. https://doi.org/10.1039/C7TA09370E
  12. Miura A., Ishiyama S., Kubo D. et al. // J. Ceram. Soc. Jpn. 2020. V. 128. № 7. P. 336. https://doi.org/10.2109/jcersj2.20001
  13. Gu K., Zhu X., Wang D. et al. // J. Energy Chem. 2021. V. 60. P. 121. https://doi.org/10.1016/j.jechem.2020.12.029
  14. Jing J., Liu W., Li T. et al. // Catalysts. 2024. V. 14. № 3. P. 171. https://doi.org/10.3390/catal14030171
  15. Junchuan Y., Wang F., He W. et al. // Chem. Commun. 2023. V. 59. P. 3719. https://doi.org/10.1039/D2CC06966K
  16. Hao M., Chen J., Chen J. et al. // J. Colloid Interface Sci. 2023. V. 642. P. 41. https://doi.org/10.1016/j.jcis.2023.03.152
  17. Nguyen T.X., Tsai C.-C., Nguyen V.T. et al. // Chem. Eng. J. 2023. V. 466. P. 143352. https://doi.org/10.1016/j.cej.2023.143352
  18. Wang F., Zou P., Zhang Y. et al. // Nat. Commun. 2023. V. 14. P. 6019. https://doi.org/10.1038/s41467-023-41706-8
  19. Ding Y., Wang Z., Liang Z. et al. // Adv. Mater. 2023. P. e2302860. https://doi.org/10.1002/adma.202302860
  20. Li S., Tong L., Peng Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 13697. https://doi.org/10.1039/D3TA01454A
  21. Wu H., Zhang J., Lu Q. et al. // ACS Appl. Mater. Interfaces. 2023. V. 15. № 32. P. 38423. https://doi.org/10.1021/acsami.3c05781
  22. Kim M., Oh I., Choi H. et al. // Cell Rep. Phys. Sci. 2022. V. 3. № 1. P. 100702. https://doi.org/10.1016/j.xcrp.2021.100702
  23. Zhu Z., Zhang Y., Kong D. et al. // Small. 2024. V. 20. P. 2307754. https://doi.org/10.1002/smll.202307754
  24. Knorpp A.J., Zawisza A., Huangfu S. et al. // RSC Adv. 2022. V. 12. № 40. Р. 26362. https://doi.org/10.1039/D2RA05435C
  25. Агафонов А.В., Шибаева В.Д., Краев А.С. и др. // Журн. неорган. химии. 2023. T. 68. № 1. С. 4.
  26. Leont’eva N.N., Drozdov V.D., Bel’skaya O.B., Cherepanova S.V. // Russ. J. Gen. Chem. 2020. V. 90. № 3. P. 509. https://doi.org/10.1134/S1070363220030275
  27. Benício L.P.F., Eulálio D., Guimarães L. de M. et al. // Mater. Res. 2018. V. 21 № 6. P. e20171004. https://doi.org/10.1590/1980-5373-MR-2017-1004
  28. Нестройная О.В., Рыльцова И.Г., Япрынцев М.Н., Лебедева О.Е. // Неорган. материалы. 2020. Т. 56. № 7. С. 788.
  29. Silambarasan M., Ramesh P.S., Geetha D., Venkatachalam V. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 6880. https://doi.org/10.1007/s10854-017-6388-6
  30. Rost C.M., Sachet E., Borman T. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms9485
  31. Dippo O.F., Vecchio K.S. // Scripta Mater. 2021. P. 113974. https://doi.org/10.1016/j.scriptamat.2021.113974

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of elemental mapping of the LDH-SG sample.

下载 (105KB)
3. Fig. 2. Powder X-ray diffraction patterns of the LDH samples: 1 – LDH-S; 2 – LDH-SG; 3 – LDH-G; 4 – LDH-SM; 5 – LDH-M.

下载 (1023KB)
4. Fig. 3. FTIR spectra of LDH: 1 – LDH-SG; 2 – LDH-SM; 3 – LDH-M; 4 – LDH-G; 5 – LDH-S.

下载 (66KB)
5. Fig. 4. Raman spectra of the LDH samples: 1 – LDH-M; 2 – LDH-G; 3 – LDH-SM; 4 – LDH-SG; 5 – LDH-S.

下载 (71KB)
6. Fig. 5. TEM micrographs: a – SDG-SM, b – SDG-G, c – SDG-SG, d – SDG-M, d – SDG-S.

下载 (464KB)
7. Fig. 6. Powder X-ray diffraction patterns recorded at different temperatures: a – SDG-SM; b – SDG-M; c – SDG-G.

下载 (356KB)

版权所有 © Russian Academy of Sciences, 2025