Strong spherical V2O5/TiO2–SiO2 composites obtained by template combined with sol-gel method

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This study is devoted to the preparation of strong spherical composites V2O5/TiO2–SiO2 by a combined template and sol-gel method. The composition, size and shape of the colloidal particles in butanol ash with tetrabutoxytitanium and tetraethoxysilane, as well as the physicochemical processes leading to the strengthening of the spherical agglomerates obtained using an anion exchanger with a gel structure, have been determined. Electrophoresis, small-angle X-ray scattering, and viscometry were used to demonstrate the presence in the sol of positively charged colloidal particles of lenticular and cylindrical shape, whose size, when the sol is stabilised, reaches 53 Å. The absorption of the sol by the anion exchanger in vanadium form is due to the equalisation of the osmotic pressure in the anion exchanger/sol system. Spherical composites with a diameter of 300 µm were obtained. It was shown by X-ray diffraction that the composites consist of V2O5 with an orthorhombic structure, TiO2 with an anatase structure, and amorphous silicon dioxide. The interaction at the interface between the phases of V2O5 with TiO2 and SiO2, which leads to the strengthening of the sphere of the V2O5/TiO2–SiO2 composite, has been demonstrated by IR and Raman spectroscopy. The results obtained can be used for the synthesis of MxOy/TiO2–SiO2 oxide composites with spherical agglomerates.

Негізгі сөздер

Авторлар туралы

S. Kuznetsova

National Research Tomsk State University

Хат алмасуға жауапты Автор.
Email: katy20.05.2004@mail.ru
Ресей, Tomsk 634050

O. Khalipova

National Research Tomsk State University

Email: katy20.05.2004@mail.ru
Ресей, Tomsk 634050

A. Shamsutdinova

National Research Tomsk State University

Email: katy20.05.2004@mail.ru
Ресей, Tomsk 634050

Әдебиет тізімі

  1. Wiroonpochit P., Boonmee P., Kerdlap W. et al. // Constr. Build. Mater. 2022. V. 353. № 24. P. 129081. https://doi.org/10.1016/j.conbuildmat.2022.129081
  2. Zeng De-W., Peng S., Chen Ch. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 48. P. 22711. https://doi.org/10.1016/j.ijhydene.2016.09.180
  3. Dorosheva I.B., Valeeva A.A., Rempel A.A. et al. // Inorg. Mater. 2021. V. 57. P. 503. https://doi.org/10.1134/S0020168521050022
  4. Tkachenko I.A., Marchenko Yu.V., Vasilyeva M.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1339. https://doi.org/10.1134/S0036023622090169
  5. Zhongmei D., Wenheng J., Weihong X. // J. Membr. Sci. 2011. V. 373. № 1–2. P. 167. https://doi.org/10.1016/j.memsci.2011.03.001
  6. Ni J., Si J., Lan T. et al. // Fuel. 2024. V. 356. P. 129613. https://doi.org/10.1016/j.fuel.2023.129613
  7. Bartik A., Fuchs J., Pacholik G. // Fuel Process. Technol. 2022. V. 237. P. 107402. https://doi.org/10.1016/j.fuproc.2022.107402
  8. Oviatt Jr. H.W., Shea K.J., Small J.H. // Chem. Mater. 1993. V. 5. P. 943. https://doi.org/10.1021/cm00031a012
  9. Lu Y., Cao G., Kale R.P. et al. // Chem. Mater. 1999. V. 11. P. 1223. https://doi.org/10.1021/cm980517y
  10. Vacassy R., Flatt R.J., Hofmann H. // J. Colloid Interface Sci. 2000. V. 227. P. 302. https://doi.org/10.1006/jcis.2000.6860
  11. Wei Q., Wang F., Nie Z.-R. et al. // J. Phys. Chem. B. 2008. V. 112. P. 9354. https://doi.org/10.1021/jp711573f
  12. Beck J.S., Vartuli J.C., Roth W.J. et al. // J. Am. Chem. Soc. 1992. V. 114. P. 10834. https://doi.org/10.1021/ja00053a020
  13. Козулин А.А., Скрипнях Е.Г., Скрипнях В.А. // Изв. вузов. Сер. Физика. 2012. Т. 55. № 7. С. 81.
  14. Takano Y., Ozawa T., Yoshinaka M. et al. // J. Mater. Synth. Process. 1999. V. 7. № 2. P. 107. https://doi.org/10.1023/A:1021869714265
  15. Kozlov G.V., Dolbin I.V., Magomedov Gus.M. // Glass Phys. Chem. 2023. V. 49. P. 402. https://doi.org/10.1134/S1087659622601009
  16. Kuznetsova S.A., Khalipova O.S., Lisitsa K.V. et al. // Nanosyst.: Phys. Chem. Math. 2021. V. 12. № 2. P. 232. https://doi.org/10.17586/2220-8054-2021-12-2-232-245
  17. Kuznetsova S.A., Brichkov A.S., Lisitsa K.V. et. al. //Russ. J. Appl. Chem. 2019. V. 92. № 2. P. 171. https://doi.org/10.1134/S1070427219020010
  18. Kuznetsova S.A., Khalipova O.S., Khasanov V.V. et al. // Appl. Mater. Today. 2022. V. 29. P. 101655. https://doi.org/10.1016/j.apmt.2022.101655
  19. Jiaguo Yu., Xiujian Zh., Jimmy C.Yu. // J. Mater. Sci. Lett. 2001. V. 20. P. 1745. https://doi.org/10.1023/A:1012458411717
  20. Wang X., Wu G., Zhou B., Shen J. // Coat. Materi. 2012. V. 6. № 1. P. 76. https://doi.org/10.3390/ma6010076
  21. Alférez F.L., Olaya J.J., Bautista J.H. // Boletín de la Sociedad Española de Cerámica y Vidrio. 2018. V. 57. № 5. P. 195. https://doi.org/10.1016/j.bsecv.2018.02.001
  22. Zheng Jin-Yu, Pang Jie-Bin, Qiu Kun-Yuan, Wei Y. // Microporous Mesoporous Mater. 2001. V. 49. P. 189. https://doi.org/10.1016/s1387-1811(01)00417-6
  23. Zhangwen X., Jun Y., Kai W. et al. // Ceram. Int. 2022. V. 48. № 7. P. 9114. https://doi.org/10.1016/j.ceramint.2021.12.096
  24. Ivicheva S.N., Ovsyannikov N.A., Lysenkov A.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1908. https://doi.org/10.1134/S0036023622601489
  25. Tursunov F. // Universum: chemistry and biology. 2023. V. 112. P. 56. https://doi.org/10.32743/UniChem.2023.112.10.16043
  26. Zhang Y., Wu Y., Chen M., Wu L. // Colloids Surf., A: Physicochem. Eng. Aspects. 2010. V. 353. P. 216. https://doi.org/10.1016/j.colsurfa.2009.11.016
  27. Huang G., Guo P., Wang J. et al. // Chem. Eng. J. 2020. V. 384. P. 123313. https://doi.org/10.1016/j.cej.2019.123313
  28. Alrammouza R., Lazerges M., Pironon J. et al. // Sens. Actuators, A: Phys. 2021. V. 332. P. 113179. https://doi.org/10.1016/j.sna.2021.113179
  29. Yanlong Yu., Hai Ming, Danfeng He et al. // J. Environ. Chem. Eng. 2023. V. 11. P. 111243. https://doi.org/10.1016/j.jece.2023.111243
  30. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  31. Гринева О.В. // Журн. структур. химии. 2007. Т. 48. № 4. С. 802.
  32. Танасюк Д.А. // Успехи в химии и хим. технологии. 2014. Т. 28. № 6. С. 111.
  33. Айлер Р. Химия кремнезема: в 2 ч. пер. с англ. М.: Мир, 1982. Ч. 2. 1127 с.
  34. Fathimah S.S., Rao P.P., Vineetha J. et al. // Dalton Trans. 2014. V. 43. P. 15851. https://doi.org/10.1039/c4dt01788a
  35. Aureliano M., Gândara R.C. // J. Inorg. Biochem. 2005. V. 99. № 5. Р. 979. https://doi.org/10.1016/j.jinorgbio.2005.02.024
  36. Kristallov L.V., Koryakova O.V., Perelyaeva L.A. et al. // Russ. J. Inorg. Chem. 1987. V. 32. № 8. P. 1073.
  37. Кузнецова Ю.Л., Жиганшина Э.Р., Гущина К.С. и др. // Изв. вузов. Прикладная химия и биотехнология. 2023. Т. 13. № 1. С. 17. https://doi.org/10.21285/2227-2925-2023-13-1-17-27
  38. Андрианов К.А., Курашева Н.А., Лаврухин Б.Д., Кутейникова Л.И. // Высокомол. соед. 1975. Т. 14. № 11. С. 2450.
  39. Мурашкевич А.Н., Лавицкая А.С., Баранникова Т.И., Жарский И.М. // Журн. прикл. спектроскопии. 2008. Т. 75. № 5. С. 724.
  40. Wang J., Wang X., Liu X. et al. // J. Mol. Catal. A: Chem. 2015. V. 402. P. 1. https://doi.org/10.1016/j.molcata.2015.03.003
  41. Su Q., Huang C.K., Wang Y.J. et al. // Alloys Compd. 2009. V. 475. Р. 518.
  42. Wachs I.E. // Catal. Today. 1996. V. 27. № 3–4. P. 437. https://doi.org/10.1016/0920-5861(95)00203-0
  43. Christodoulakis A., Machli M., Lemonidou A.A. et al. // J. Catal. 2004. V. 222. № 2. P. 293. https://doi.org/10.1016/j.jcat.2003.10.007
  44. Banares M., Wachs I. // J. Raman Spectrosc. 2010. V. 33. № 5. P. 359. http://dx.doi.org/10.1002/jrs.866
  45. Busca G. // J. Raman Spectrosc. 2002. V. 33. № 5. P. 348. http://dx.doi.org/10.1002/jrs.867
  46. Went G.T., Leu L.-J., Bell A.T. // J. Catal. 1992. V. 134. № 2. P. 479. https://doi.org/10.1016/0021-9517(92)90336-G
  47. Беликова С.Е. Водоподготовка: Справочник. М.: Аква-Терм, 2007. 240 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024