Thermodynamic Properties of Lutetium Stannate Lu2Sn2O7 in the Temperature Range 0–1871 K

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Lutetium stannate with a pyrochlore structure was synthesized using solid state reaction route. The heat capacity of the polycrystalline Lu2Sn2O7 in the temperature range 7.99–1871 K was measured by adiabatic and differential scanning calorimetry methods. Entropy, enthalpy change, and derived Gibbs energy were calculated from the smoothed heat capacity data. The Gibbs free energy of Lutetium stannate from simple substances was estimated, using the ΔfS°(Т) values obtained in this work and the ΔfH°(Т) values from the literature. The temperature dependence of the cubic crystal lattice parameter and the value of the coefficient of thermal expansion in the temperature range 300–1273 K were determined by high-temperature X-ray diffraction.

Texto integral

Acesso é fechado

Sobre autores

M. Ryumin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: ryumin@igic.ras.ru
Rússia, Moscow

A. Tyurin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Rússia, Moscow

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Rússia, Moscow

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Rússia, Moscow

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ryumin@igic.ras.ru
Rússia, Moscow

Bibliografia

  1. Pruneda J.M., Artacho E. // Phys. Rev. B. 2005. V. 72. P. 085107. https://doi.org/10.1103/PhysRevB.72.085107
  2. Boujnah M., Chavira E. // Optic. Mater. 2020. V. 110. P. 110499. https://doi.org/10.1016/j.optmat.2020.110499
  3. Pirzada M., Grimes R.W., Minervini L. et al. // Solid State Ionics. 2001. V. 140. P. 201. https://doi.org/10.1016/S0167-2738(00)00836-5
  4. Lang M., Zhang F., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. P. 2951. https://doi.org/10.1016/j.nimb.2010.05. 016
  5. Wang J., Xu F., Wheatley R.J. et al. // Mater. Des. 2015. V. 85. P. 423. https://doi.org/10.1016/j.matdes.2015.07.022
  6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  7. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 68 P. 727. https://doi.org/10.1016/j.scriptamat.2013.01.010
  8. Joulia A., Vardelle M., Rossignol S. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2633. https://doi.org/10.1016/j.jeurceramsoc.2013.03.030
  9. Wang Y., Gao Bo, Wang Q. et al. // J. Mater. Sci. 2020. V. 55. P. 15405. https://doi.org/10.1007/s10853–020–05104–5
  10. Ashcroft A.T., Cheetham A.K., Green M.L.H. et al. // J. Chem. Soc., Chem. Commun. 1989. P. 1667. https://doi.org/10.1039/C39890001667
  11. Srivastava A.M. // Opt. Mater. 2009. V. 31. P. 881. https://doi.org/10.1016/j.optmat.2008.10.021
  12. Kennedy B.J., Hunter B.A., Howard C.J. // J. Solid State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
  13. Brisse F., Knop O. // Can. J. Chem. 1968. V. 46. № 6. P. 859. https://doi.org/10.1139/v68–148
  14. Vandenborre M.T., Husson E., Chatry J.P., Michel D. // J. Raman Spectrosc. 1983. V. 14. № 2. P. 63. https://doi.org/10.1002/jrs.1250140202
  15. Chen Z.J., Xiao H.Y., Zu X.T. et al. // Comput. Mater. Sci. 2008. V. 42 P. 653. https://doi.org/10.1016/j.commatsci.2007.09.01
  16. Whinfreyd C., Eckar O., Tauber A. // J. Am. Chem. Soc. 1960. V. 82. № 11. P. 2695. https://doi.org/10.1021/ja01496a010
  17. Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
  18. Zhang F., Chen M., Zhang Sh. et al. // CALPHAD. 2021. V. 72. P. 102248. https://doi.org/10.1016/j.calphad.2020.102248
  19. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  20. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 60. № 12. С. 1668. https://doi.org/10.31857/S0044457 X2012020X
  21. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1615. https://doi.org/10.31857/S0044457X22100543
  22. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  23. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 5. С. 513. https://doi.org/10.7868/S0002337X17050050
  24. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техника эксперимента. 1985. Т. 6. С. 195.
  25. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623. https://doi.org/10.1006/jcht.1996.0173
  26. Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac2006781112051.
  27. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. № 2. P. 159. http://doi.org/10.6028/jres.087.012
  28. Merkushkin A.O., Aung T., Mo Z.E. // Glass Ceram. 2011. V. 67. № 11–12. P. 347. https://doi.org/10.1007/s10717–011–9295-y
  29. Whinfrey C.G., Tauber A. // J. Am. Chem. Soc. 1961. V. 83. № 3. P. 755.
  30. Lobenstein H.M., Zilber R., Zmora H. // Phys. Lett. 1970. V. 33A. P. 453. https://doi.org/10.1016/0375-9601 (70)90604-3
  31. Powell M., Sanjeewa L.D., McMillen C.D. et al. // Cryst. Growth Des. 2019. V. 19. P. 4920. https://doi.org/10.1021/acs.cgd.8b01889
  32. Гуревич В.М., Гавричев К.С., Горбунов В.Е. и др. // Геохимия. 2004. № 10. С. 1096.
  33. Zhang Y., Jung In-Ho. // CALPHAD. 2017. V. 58. P. 169. http://doi.org/10.1016/j.calphad.2017.07.001
  34. Leitner J., Voňka P., Sedmidubsky D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  35. Voskov A.L., Kutsenok I.B., Voronin G.F. // CALPHAD. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  36. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  37. Печковская К.И., Никифорова Г.Е., Тюрин А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 476. https://doi.org/10.31857/S0044457X 22040158
  38. Bissengaliyeva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/ j.jct.2021.106646
  39. Saha S., Singh S., Dkhil B. et al. // Phys. Rev. B. 2008. V. 78. P. 214102. https://doi.org/10.1103/PhysRevB.78.214102
  40. Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
  41. Kowalski P.M. // Scripta Mater. 2020. V. 189 P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
  42. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  43. Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: 1965–1982.
  44. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. http:// doi.org/10.1063/1.4825256
  45. Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 69. P. 401. http://doi.org/10.1016/j.scriptamat.2013.05.030
  46. Zhixue Q., Chunlei W., Wei P. // Acta Mater. 2012. V. 60. P. 2939. https://doi.org/10.1016/j.actamat.2012.01.057

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Supplementary
Baixar (15KB)
3. Fig. 1. Microphotographs of lutetium stannate after annealing at 1773 K

Baixar (177KB)
4. Fig. 2. Diffractogram of Lu2Sn2O7

Baixar (59KB)
5. Fig. 3. EDX spectrum of stannate lutetium stannate

Baixar (83KB)
6. Fig. 4. Heat capacity of lutetium stannate: grey line - curve obtained in the present work; black squares - values obtained by addition of heat capacities of initial oxides (Neumann-Kopp rule); black line - values [23]. Dashed line in the tab - heat capacity of gadolinium stannate

Baixar (114KB)
7. Fig. 5. Temperature dependence of Gibbs energy of lutetium stannate formation from oxides

Baixar (43KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024