Thermodynamic Properties of Lutetium Stannate Lu2Sn2O7 in the Temperature Range 0–1871 K
- 作者: Ryumin M.A.1, Tyurin A.V.1, Khoroshilov A.V.1, Nikiforova G.E.1, Gavrichev K.S.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- 期: 卷 69, 编号 8 (2024)
- 页面: 1135-1143
- 栏目: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://innoscience.ru/0044-457X/article/view/666373
- DOI: https://doi.org/10.31857/S0044457X24080068
- EDN: https://elibrary.ru/XKKZIJ
- ID: 666373
如何引用文章
详细
Lutetium stannate with a pyrochlore structure was synthesized using solid state reaction route. The heat capacity of the polycrystalline Lu2Sn2O7 in the temperature range 7.99–1871 K was measured by adiabatic and differential scanning calorimetry methods. Entropy, enthalpy change, and derived Gibbs energy were calculated from the smoothed heat capacity data. The Gibbs free energy of Lutetium stannate from simple substances was estimated, using the ΔfS°(Т) values obtained in this work and the ΔfH°(Т) values from the literature. The temperature dependence of the cubic crystal lattice parameter and the value of the coefficient of thermal expansion in the temperature range 300–1273 K were determined by high-temperature X-ray diffraction.
全文:

作者简介
M. Ryumin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ryumin@igic.ras.ru
俄罗斯联邦, Moscow
A. Tyurin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ryumin@igic.ras.ru
俄罗斯联邦, Moscow
A. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ryumin@igic.ras.ru
俄罗斯联邦, Moscow
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ryumin@igic.ras.ru
俄罗斯联邦, Moscow
K. Gavrichev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ryumin@igic.ras.ru
俄罗斯联邦, Moscow
参考
- Pruneda J.M., Artacho E. // Phys. Rev. B. 2005. V. 72. P. 085107. https://doi.org/10.1103/PhysRevB.72.085107
- Boujnah M., Chavira E. // Optic. Mater. 2020. V. 110. P. 110499. https://doi.org/10.1016/j.optmat.2020.110499
- Pirzada M., Grimes R.W., Minervini L. et al. // Solid State Ionics. 2001. V. 140. P. 201. https://doi.org/10.1016/S0167-2738(00)00836-5
- Lang M., Zhang F., Zhang J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2010. V. 268. P. 2951. https://doi.org/10.1016/j.nimb.2010.05. 016
- Wang J., Xu F., Wheatley R.J. et al. // Mater. Des. 2015. V. 85. P. 423. https://doi.org/10.1016/j.matdes.2015.07.022
- Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
- Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 68 P. 727. https://doi.org/10.1016/j.scriptamat.2013.01.010
- Joulia A., Vardelle M., Rossignol S. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2633. https://doi.org/10.1016/j.jeurceramsoc.2013.03.030
- Wang Y., Gao Bo, Wang Q. et al. // J. Mater. Sci. 2020. V. 55. P. 15405. https://doi.org/10.1007/s10853–020–05104–5
- Ashcroft A.T., Cheetham A.K., Green M.L.H. et al. // J. Chem. Soc., Chem. Commun. 1989. P. 1667. https://doi.org/10.1039/C39890001667
- Srivastava A.M. // Opt. Mater. 2009. V. 31. P. 881. https://doi.org/10.1016/j.optmat.2008.10.021
- Kennedy B.J., Hunter B.A., Howard C.J. // J. Solid State Chem. 1997. V. 130. P. 58. https://doi.org/10.1006/jssc.1997.7277
- Brisse F., Knop O. // Can. J. Chem. 1968. V. 46. № 6. P. 859. https://doi.org/10.1139/v68–148
- Vandenborre M.T., Husson E., Chatry J.P., Michel D. // J. Raman Spectrosc. 1983. V. 14. № 2. P. 63. https://doi.org/10.1002/jrs.1250140202
- Chen Z.J., Xiao H.Y., Zu X.T. et al. // Comput. Mater. Sci. 2008. V. 42 P. 653. https://doi.org/10.1016/j.commatsci.2007.09.01
- Whinfreyd C., Eckar O., Tauber A. // J. Am. Chem. Soc. 1960. V. 82. № 11. P. 2695. https://doi.org/10.1021/ja01496a010
- Kong L., Karatchevtseva I., Blackford M.G. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 9. P. 2994. https://doi.org/10.1111/jace.12409
- Zhang F., Chen M., Zhang Sh. et al. // CALPHAD. 2021. V. 72. P. 102248. https://doi.org/10.1016/j.calphad.2020.102248
- Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
- Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 60. № 12. С. 1668. https://doi.org/10.31857/S0044457 X2012020X
- Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1615. https://doi.org/10.31857/S0044457X22100543
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 5. С. 513. https://doi.org/10.7868/S0002337X17050050
- Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техника эксперимента. 1985. Т. 6. С. 195.
- Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623. https://doi.org/10.1006/jcht.1996.0173
- Wieser M.E. // Pure Appl. Chem. 2006. V. 78. P. 2051. https://doi.org/10.1351/pac2006781112051.
- Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. № 2. P. 159. http://doi.org/10.6028/jres.087.012
- Merkushkin A.O., Aung T., Mo Z.E. // Glass Ceram. 2011. V. 67. № 11–12. P. 347. https://doi.org/10.1007/s10717–011–9295-y
- Whinfrey C.G., Tauber A. // J. Am. Chem. Soc. 1961. V. 83. № 3. P. 755.
- Lobenstein H.M., Zilber R., Zmora H. // Phys. Lett. 1970. V. 33A. P. 453. https://doi.org/10.1016/0375-9601 (70)90604-3
- Powell M., Sanjeewa L.D., McMillen C.D. et al. // Cryst. Growth Des. 2019. V. 19. P. 4920. https://doi.org/10.1021/acs.cgd.8b01889
- Гуревич В.М., Гавричев К.С., Горбунов В.Е. и др. // Геохимия. 2004. № 10. С. 1096.
- Zhang Y., Jung In-Ho. // CALPHAD. 2017. V. 58. P. 169. http://doi.org/10.1016/j.calphad.2017.07.001
- Leitner J., Voňka P., Sedmidubsky D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- Voskov A.L., Kutsenok I.B., Voronin G.F. // CALPHAD. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Печковская К.И., Никифорова Г.Е., Тюрин А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 476. https://doi.org/10.31857/S0044457X 22040158
- Bissengaliyeva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/ j.jct.2021.106646
- Saha S., Singh S., Dkhil B. et al. // Phys. Rev. B. 2008. V. 78. P. 214102. https://doi.org/10.1103/PhysRevB.78.214102
- Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
- Kowalski P.M. // Scripta Mater. 2020. V. 189 P. 7. https://doi.org/10.1016/j.scriptamat.2020.07.048
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: 1965–1982.
- Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. http:// doi.org/10.1063/1.4825256
- Feng J., Xiao B., Zhou R., Pan W. // Scripta Mater. 2013. V. 69. P. 401. http://doi.org/10.1016/j.scriptamat.2013.05.030
- Zhixue Q., Chunlei W., Wei P. // Acta Mater. 2012. V. 60. P. 2939. https://doi.org/10.1016/j.actamat.2012.01.057
补充文件
