Optical ceramics obtained by hot pressing of CVD-ZnSe powder

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of mechanical grinding conditions of high-purity CVD zinc selenide (ZnSe) powders on their particle size distribution, their sintering process, and the transparency of optical ceramics has been studied. Powders with an optimal granulometric composition were obtained, having an average particle size of 0.3 μm with a maximum of not more than 1 μm. These parameters were achieved by grinding the powders in a planetary ball mill for 20 hours at a grinding bowl rotation speed of 150 rpm. ZnSe optical ceramics are fabricated by a combination of hot pressing and subsequent hot isostatic pressing of CVD powders. The maximum transmission for 2 mm thick samples was 69% (close to theoretically achievable) at a wavelength of 14 μm. The combination of characteristics of CVD ZnSe powders subjected to additional grinding shows their promise for use in optical ceramic technology.

Texto integral

Acesso é fechado

Sobre autores

S. Balabanov

G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RAS

Autor responsável pela correspondência
Email: timofeeva@ihps-nnov.ru
Rússia, Nizhny Novgorod, 603137

N. Timofeeva

G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RAS

Email: timofeeva@ihps-nnov.ru
Rússia, Nizhny Novgorod, 603137

T. Evstropov

G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RAS

Email: timofeeva@ihps-nnov.ru
Rússia, Nizhny Novgorod, 603137

D. Kosyanov

Far Eastern Federal University

Email: timofeeva@ihps-nnov.ru
Rússia, Vladivostok, 690922

A. Naumova

G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RAS

Email: timofeeva@ihps-nnov.ru
Rússia, Nizhny Novgorod, 603137

S. Filofeev

G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RAS

Email: timofeeva@ihps-nnov.ru
Rússia, Nizhny Novgorod, 603137

Bibliografia

  1. Page R.H., DeLoach L.D., Wilke G.D. et al. // Cr2+-doped II-VI crystals: new widely-tunable, room-temperature mid-IR lasers, in: LEOS ’95. IEEE Lasers Electro-Optics Soc. 1995 Annu. Meet. 8th Annu. Meet. Conf. Proc.30–31 October. San Francisco, 1995. P. 449. https://doi.org/10.1109/LEOS.1995.484795
  2. Adams J.J., Bibeau C., Page R.H. et al. // Opt. Lett. 1999. V. 24. № 23. P. 1720. https://doi.org/10.1364/OL.24.001720
  3. Schepler K.L., Peterson R.D., Berry P.A. et al. // IEEE J. Sel. Top. Quantum Electron. 2005. V. 11. № 3. P. 713. https://doi.org/10.1109/JSTQE.2005.850570
  4. Firsov K.N., Gavrishchuk E.M., Ikonnikov V.B. et al. // Laser Phys. Lett. 2016. V. 13. № 5. P. 055002. https://doi.org/10.1088/1612-2011/13/5/055002
  5. Kurashkin S.V., Martynova O.V., Savin D.V. et al. // Laser Phys. Lett. 2019. V. 16. № 7. P. 075801. https://doi.org/10.1088/1612-202X/ab21cd
  6. Balabanov S.S., Firsov K.N., Gavrishchuk E.M. et al. // Laser Phys. Lett. 2019. V. 16. № 5. P. 055004. https://doi.org/10.1088/1612-202X/ab09e8
  7. Palashov O.V., Starobor A.V., Perevezentsev E.A. et al. // Materials (Basel). 2021. V. 14. № 14. P. 3944. https://doi.org/10.3390/ma14143944
  8. Dormidonov A.E., Firsov K.N., Gavrishchuk E.M. et al. // Phys. Wave Phenom. 2020. V. 28. № 3. P. 222. https://doi.org/10.3103/S1541308X20030073
  9. Timofeeva N., Balabanov S., Li J. // Ceramics. 2023. V. 6. № 3. P. 1517. https://doi.org/10.3390/ceramics6030094
  10. Yavetskiy R.P., Balabanov A.E., Parkhomenko S.V. et al. // J. Adv. Ceram. 2021. V. 10. № 1. P. 49. https://doi.org/10.1007/s40145-020-0416-3
  11. Karki K., Yu S., Fedorov V. et al. // Opt. Mater. Express. 2020. V. 10. № 12. P. 3417. https://doi.org/10.1364/OME.410941
  12. Yu S., Carloni D., Wu Y. // J.Am. Ceram. Soc. 2020. V. 103. № 8. P. 4159. https://doi.org/10.1111/jace.17144
  13. Zhou G., Calvez L., Delaizir G. et al. // Optoelectron. Adv. Mater. Rapid Commun. 2014. V. 8. P. 436.
  14. Yu S., Wu Y. // J.Am. Ceram. Soc. 2019. V. 102. № 12. P. 7089. https://doi.org/10.1111/jace.16612
  15. Luo Y., Yin M., Chen L. et al. // Opt. Mater. Express. 2021. V. 11. № 8. P. 2744. https://doi.org/10.1364/OME.432380
  16. Wei S., Zhang L., Yang H. et al. // Opt. Mater. Express. 2017. V. 7. № 4. P. 1131. https://doi.org/10.1364/OME.7.001131
  17. Luo Y., Yin M., Chen L. et al. // Ceram. Int. 2022. V. 48. № 3. P. 3473. https://doi.org/10.1016/j.ceramint.2021.10.125
  18. Gao J.L., Liu P., Zhang J. et al. // Solid State Phenom. 2018. V. 281. P. 661. https://doi.org/10.4028/www.scientific.net/SSP. 281.661
  19. Гаврищук Е.М. // Неорган. материалы. 2003. Т. 39. № 9. С. 1030. https://doi.org/10.1023/A:1025529017192
  20. Li J., Liu J., Liu B. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 10. P. 2497. https://doi.org/10.1016/j.jeurceramsoc.2014.03.004
  21. Parkhomenko S., Balabanov A., Kryzhanovska O. et al. // Ceram. Int. 2023. V. 49. № 17. P. 29048. https://doi.org/10.1016/j.ceramint.2023.06.179
  22. Гаврищук Е.М., Савин Д.В., Иконников и др. // Неорган. материалы. 2006. Т. 42. № 8. С. 928. https://doi.org/10.1134/S0020168506080061
  23. Пермин Д.А., Беляев А.В., Кошкин В.А. и др. // Неорган. материалы. 2021. Т. 57. № 8. С. 901. https://doi.org/10.31857/S0002337X21080248
  24. Морозова Н.К., Плотниченко В.Г., Гаврищук Е.М. и др. // Неорган. материалы. 2003. Т. 39. № 8. С. 920. https://doi.org/10.1023/A:1025004808839
  25. Балабанов С.С., Гаврищук Е.М., Гладилин А.А. и др. // Неорган. материалы. 2019. Т. 55. № 5. С. 459. https://doi.org/10.1134/S0002337X19050014
  26. Papynov E.K., Portnyagin A.S., Modin E.B. et al. // Mater. Charact. 2018. V. 145. P. 294. https://doi.org/10.1016/j.matchar.2018.08.044
  27. Goldstein A., Krell A. // J.Am. Ceram. Soc. 2016. V. 99. № 10. P. 3173. https://doi.org/10.1111/jace.14553
  28. Садовников С.И., Сергеева С.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 444. https://doi.org/10.1134/S0036023623600120
  29. Симоненко Е.П., Симоненко Н.П., Гордеев А.Н. и др. // Журн. неорган. химии. 2018. Т. 63. № 11. С. 1465. https://doi.org/10.1134/S0044457X1811017X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of milling time (0, 6, 12, 20 and 40 h) on the integral curves of particle size distribution volume curves for CVD ZnSe powders.

Baixar (140KB)
3. Fig. 2. Effect of milling time on specific surface area SBET and equivalent particle diameter dBET of CVD ZnSe powders.

Baixar (88KB)
4. Fig. 3. Microphotographs of CVD powders of ZnSe after milling for 2 (a) and 60 h (b).

Baixar (808KB)
5. Fig. 4. Appearance of ZnSe ceramic samples from CVD powders with different milling times.

Baixar (1MB)
6. Fig. 5. Transmission spectra of ZnSe ceramics obtained from CVD powders with milling times of 0, 2, 6, 12, and 20 h.

Baixar (170KB)
7. Fig. 6. Photographs of pores in the volume of ZnSe 2 (a) and 20 (b) ceramics.

Baixar (189KB)
8. Fig. 7. Histograms of grain size distribution for ZnSe ceramics: samples 0 (a), 12 (b), 20 (c).

Baixar (157KB)
9. Fig. 8. Photographs of microstructures of ZnSe ceramics: samples 6 (a) and 20 (b).

Baixar (793KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024