Open AI as assistants in interview analysis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article discusses possibilities of using software (using QDA Miner Light as an example) and artificial intelligence (AI) to analyze in-depth interviews in sociological research. The authors consider a long-known, but not very widespread in the Russian-speaking segment, QDA Miner, as well as the new and increasingly popular Open AI, as tools that can complement traditional approaches to analyzing qualitative data. Various interview arrays are used to test the tools. The article shows how the use of these technologies improves efficiency of information processing, minimizes errors associated with manual coding, tests research hypotheses and obtains new conclusions. All this together allows not only to significantly speed up the analysis process, but also to improve quality of the conclusions obtained. The authors argue for a balanced approach combining traditional methods with innovative technologies to achieve a deeper understanding of research topics and enhance reliability of findings. By showcasing capabilities of both established software and emerging AI tools, this study contributes to advancing methodological practices in sociology and encourages researchers to adopt a more versatile toolkit for qualitative analysis.

全文:

受限制的访问

作者简介

Konstantin Galkin

Sociological Institute of FCTAS RAS

编辑信件的主要联系方式.
Email: kgalkin1989@mail.ru

Cand. Sci. (Sociol.), Senior Researcher

俄罗斯联邦, St. Petersburg

Irina Petukhova

Sociological Institute of FCTAS RAS; Petrozavodsk State University

Email: irini-prz@yandex.ru

Cand. Sci. (Sociol.), Senior Researcher, docent

俄罗斯联邦, St. Petersburg; Petrozavodsk

Oksana Parfenova

Sociological Institute of FCTAS RAS

Email: oparfenova2023@yandex.ru

Cand. Sci. (Sociol.), Senior Researcher

俄罗斯联邦, St. Petersburg

参考

  1. Bail C. A. (2024) Can Generative AI improve social science? Proceedings of the National Academy of Sciences. No. 21(121): e2314021121. doi: 10.1073/pnas.2314021121.
  2. Bhaduri S. et al. Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research. URL: https://arxiv.org/pdf/2408.11043 (accessed 24.09.24).
  3. Bumbuc S. (2016) About subjectivity in qualitative data interpretation. International Conference Knowledge-Based Organization. No. 2(22): 419–424. doi: 10.1515/kbo-2016-0072.
  4. Danilova A. G., Mitina O. V. (2021) Computerized qualitative text analysis. Vestnik Moskovskogo universiteta [Bulletin of Moscow University]. Series 14. Psychology. No. 1: 220–240. doi: 10.11621/vsp.2021.01.09. (In Russ.)
  5. Davidson T. (2024) Start generating: Harnessing generative artificial intelligence for sociological research. Socius: 1–17. doi: 10.1177/2378023124125965.
  6. Grossmann I. et al. (2023) AI and the Transformation of Social Science Research. Science. No. 380(6650): 1108–1109. doi: 10.1126/science.adi1778.
  7. Kelle U. (1996) Computer-Aided Qualitative Data Analysis: an Overview. In: Text Analysis and Computers / Еd. by C. Zü ll, J. Harkness, J.H.P. Hoffmeyer-Zlotnik. In: Mannheim: Zentrum für Umfragen, Methoden und Analysen: 33–63.
  8. Kotov D. (2023) Algorithms of artificial intelligence in applied sociological research. Sociodigger [Sociodigger]. Vol. 4. Issue. 7–8(27). URL: https://sociodigger.ru/articles/articles-page/algoritmy-iskusstvennogo-intellekta-v-prikladnykh-sociologicheskikh-issledovanijakh (accessed 09.24.24). (In Russ.)
  9. Krippendorff K. (2018) Content analysis: An introduction to its methodology. Sage publications. In: Parfenova A. et al. (2024) Automating Qualitative Data Analysis with Large Language Models. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Vol. 4: 177– 185. doi: 10.18653/v1/2024.acl-srw.17.
  10. Maltseva E.Yu., Molchanova E. V. (2015) Application of information technologies in conducting sociological research. Kontsept [Concept]. No. 2: 61–65. (In Russ.)
  11. Parfenova A. et al. (2024) Automating Qualitative Data Analysis with Large Language Models. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Vol. 4. P. 177–185. doi: 10.18653/v1/2024.acl-srw.17.
  12. Practices of qualitative data analysis in social sciences (2023) / Ed. E. V. Polukhina. Moscow. (In Russ.)
  13. Strauss A., Corbin J. (2001) Fundamentals of Qualitative Research: Grounded Theory, Procedures, and Techniques / translated from English by Vasilyeva T. S. Moscow: Editorial URSS. (In Russ.)
  14. Vidyasova L. A. (2023) Active and delayed aging in the assessments of the elderly (according to a pilot study in St. Petersburg). Zhurnal issledovaniy sotsial’noy politiki [Journal of Social Policy Research]. No. 3(21): 485–502. doi: 10.17323/727-0634-2023-21-3-485-502. (In Russ.)
  15. Wiltshier F. (2011) Researching with NVivo 8. Forum: Qualitative Social Research. Vol. 12. No. 1. URL: http://www.qualitative-research.net/index.php/fqs/article/view/1628/3146 (accessed 24.09.24).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The frequency of keywords in the texts of interviews with working elderly people on the topic "using ICT", in %

下载 (64KB)
3. Fig. 2. The frequency of keywords in the texts of interviews with unemployed elderly people on the topic "using ICT", in %

下载 (65KB)
4. Fig. 3. Frequency of keywords in the texts of interviews with working elderly people on the topic "age perception/aging", in %

下载 (71KB)
5. Fig. 4. Frequency of keywords in the texts of interviews with unemployed elderly people on the topic "age perception/aging", in %

下载 (71KB)
6. Fig. 5. The tone of the texts of interviews of working elderly people on the topic "using ICT"

下载 (63KB)
7. Fig. 6. The tone of the texts of interviews of unemployed elderly people on the topic "using ICT"

下载 (63KB)
8. Fig. 7. The tone of the texts of interviews of working elderly people on the topic "perception of aging and age"

下载 (65KB)
9. 8. The tone of the texts of interviews of working elderly people on the topic "perception of aging and age"

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2025