Instrumental Approaches to the Detection and Quantification of Surfactin
- Authors: Trefilov V.S.1, Lindin E.Y.1, Monakhova M.V.1, Kisil O.V.2, Viryasov M.B.1, Oretskaya T.S.1, Kubareva E.A.1
-
Affiliations:
- Lomonosov Moscow State University
- FSBI Gause Institute of New Antibiotics
- Issue: Vol 51, No 2 (2025)
- Pages: 163-188
- Section: Articles
- URL: https://innoscience.ru/0132-3423/article/view/682733
- DOI: https://doi.org/10.31857/S0132342325020016
- EDN: https://elibrary.ru/LDBFYT
- ID: 682733
Cite item
Abstract
Microorganisms are able to produce a wide variety of biological surfactants, also known as biosurfactants. The potential for using biosurfactants in different areas of human life requires the development and improvement of methods to find producer strains, determine the content of biosurfactants in different natural samples, as well as to upgrade the approaches to isolation and purification of these substances. This review focuses on the data concerning the structure, properties, and methods of surfactin synthesis, which is one of the most interesting members of the lipopeptides that are related to biosurfactants. Information regarding the structure, properties, and applications of surfactin, methods for producing surfactin and its derivatives; instrumental techniques for detecting surfactin, including various types of chromatography (TLC, HPLC, and HPLC-MS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) was summarized, and analyzed. The review provides an analysis of instrumental approaches used to detect and measure surfactin in bacterial cultures, discussing their accessibility, sensitivity, selectivity, and overall effectiveness.
Keywords
Full Text

About the authors
V. S. Trefilov
Lomonosov Moscow State University
Email: oretskaya@belozersky.msu.ru
Department of Chemistry
Russian Federation, Leninskye gory 1, Moscow, 119991E. Y. Lindin
Lomonosov Moscow State University
Email: oretskaya@belozersky.msu.ru
Department of Chemistry
Russian Federation, Leninskye gory 1, Moscow, 119991M. V. Monakhova
Lomonosov Moscow State University
Email: oretskaya@belozersky.msu.ru
A.N. Belozersky Institute of Physico-Chemical Biology
Russian Federation, Leninskye gory 1, Moscow, 119991O. V. Kisil
FSBI Gause Institute of New Antibiotics
Email: oretskaya@belozersky.msu.ru
Russian Federation, ul. Bolshaya Pirogovskaya 11, Moscow, 119021
M. B. Viryasov
Lomonosov Moscow State University
Email: oretskaya@belozersky.msu.ru
A.N. Belozersky Institute of Physico-Chemical Biology
Russian Federation, Leninskye gory 1, Moscow, 119991T. S. Oretskaya
Lomonosov Moscow State University
Author for correspondence.
Email: oretskaya@belozersky.msu.ru
A.N. Belozersky Institute of Physico-Chemical Biology
Russian Federation, Leninskye gory 1, Moscow, 119991E. A. Kubareva
Lomonosov Moscow State University
Email: oretskaya@belozersky.msu.ru
A.N. Belozersky Institute of Physico-Chemical Biology
Russian Federation, Leninskye gory 1, Moscow, 119991References
- Markande A.R., Patel D., Varjani S. // Bioresour. Technol. 2021. V. 330. P. 124963. https://doi.org/10.1016/j.biortech.2021.124963
- Shekhar S., Sundaramanickam A., Balasubramanian T. // Crit. Rev. Environ. Sci. Technol. 2015. V. 45. P. 1522–1554. https://doi.org/10.1080/10643389.2014.955631
- Cameotra S.S., Makkar R.S., Kaur J., Mehta S.K. // Biosurfactants / Ed. Sen R. New York: Springer New York, 2010. V. 672. P. 261–280. https://doi.org/10.1007/978-1-4419-5979-9_20
- Singh P., Patil Y., Rale V. // J. Appl. Microbiol. 2019. V. 126. P. 2–13. https://doi.org/10.1111/jam.14057
- Pereira J.F.B., Gudiña E.J., Costa R., Vitorino R., Teixeira J. A., Coutinho J.A.P., Rodrigues L.R. // Fuel. 2013. V. 111. P. 259–268. https://doi.org/10.1016/j.fuel.2013.04.040
- Théatre A., Cano-Prieto C., Bartolini M., Laurin Y., Deleu M., Niehren J., Fida T., Gerbinet S., Alanjary M., Medema M.H., Léonard A., Lins L., Arabolaza A., Gramajo H., Gross H., Jacques P. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 623701. https://doi.org/10.3389/fbioe.2021.623701
- de Souza Araújo L., Santana L.A.R., Otenio M.H., Nascimento C.W., Cerqueira A.F.L.W., Rodarte M.P. // Appl. Biochem. Biotechnol. 2024. V. 196. P. 9049– 9063. https://doi.org/10.1007/s12010-024-05036-9
- Kumari S., Debnath M., Joshi S., Sonawane S.H. // Ind. Eng. Chem. Res. 2024. V. 63. P. 13189–13207. https://doi.org/10.1021/acs.iecr.4c00168
- Shaikhah D., Loise V., Angelico R., Porto M., Calandra P., Abe A.A., Testa F., Bartucca C., Oliviero Rossi C., Caputo P. // Molecules. 2024. V. 29. P. 301. https://doi.org/10.3390/molecules29020301
- Aqif M., Shah M.U.H., Khan R., Umar M., Haider S., Razak S.I.A., Wahit M.U., Khan S.U.-D., Sivapragasam M., Ullah S., Nawaz R. // Environ. Sci. Pollut. Res. 2024. V. 31. P. 47475–47504. https://doi.org/10.1007/s11356-024-34248-z
- Naughton P.J. Marchant R., Naughton V., Banat I.M. // J. Appl. Microbiol. 2019. V. 127. P. 12–28. https://doi.org/10.1111/jam.14243
- Sarubbo L.A., Silva M.G.C., Durval I.J.B., Bezerra K.G.O., Ribeiro B.G., Silva I.A., Twigg M.S., Banat I.M. // Biochem. Engineer. J. 2022. V. 181. P. 108377. https://doi.org/10.1016/j.bej.2022.108377
- Arima K., Kakinuma A., Tamura G. // Biochem. Biophys. Res. Commun. 1968. V. 31. P. 488–494. https://doi.org/10.1016/0006-291X(68)90503-2
- Rahman F.B., Sarkar B., Moni R., Rahman M.S. // Biotechnol. Rep. (Amst). 2021. V. 32. P. e00686. https://doi.org/10.1016/j.btre.2021.e00686
- Saiyam D., Dubey A., Malla M.A., Kumar A. // Braz. J. Microbiol. 2024. V. 55. P. 281–295. https://doi.org/10.1007/s42770-023-01228-3
- Кисиль О.В., Трефилов В.С., Садыкова В.С., Зверева М.Э., Кубарева Е.А. // Прикл. биохим. микробиол. Т. 59. С. 1–13. https://doi.org/10.31857/S0555109923010026
- Qi X., Liu W., He X., Du C. // Arch. Microbiol. 2023. V. 205. P. 313. https://doi.org/10.1007/s00203-023-03652-3
- Zhen C., Ge X.-F., Lu Y.-T., Liu W.-Z. // AIMS Microbiol. 2023. V. 9. P. 195–217. https://doi.org/10.3934/microbiol.2023012
- Xia L., Wen J. // Crit. Rev. Biotechnol. 2023. V. 43. P. 1111–1128. https://doi.org/10.1080/07388551.2022.2095252
- Karamchandani B.M., Pawar A.A., Pawar S.S., Syed S., Mone N.S., Dalvi S.G., Rahman P.K.S.M., Banat I.M., Satpute S.K. // Front. Bioeng. Biotechnol. 2022. V. 10. P. 1047279. https://doi.org/10.3389/fbioe.2022.1047279
- Pardhi D.S., Panchal R.R., Raval V.H., Joshi R.G., Poczai P., Almalki W.H., Rajput K.N. // Front. Microbiol. 2022. V. 13. P. 982603. https://doi.org/10.3389/fmicb.2022.982603
- Chen X., Lu Y., Shan M., Zhao H., Lu Z., Lu Y. // World J. Microbiol. Biotechnol. 2022. V. 38. P. 143. https://doi.org/10.1007/s11274-022-03323-3
- Nitschke M., Marangon C.A. // Crit. Rev. Biotechnol. 2022. V. 42. P. 294–310. https://doi.org/10.1080/07388551.2021.1933890
- Mishra S., Lin Z., Pang S., Zhang Y., Bhatt P., Chen S. // J. Hazard Mater. 2021. V. 418. P. 126253. https://doi.org/10.1016/j.jhazmat.2021.126253
- Aziz Z.A.A., Setapar S.H.M., Khatoon A., Ahmad A. // In: Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine. Chapter 18 / Ed. Sarma H., Prasad M.N.V. Wiley, 2021. P. 397–421. https://doi.org/10.1002/9781119671022.ch18
- Yang R., Lei S., Xu X., Jin H., Sun H., Zhao X., Pang B., Shi J. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 8077–8087. https://doi.org/10.1007/s00253-020-10801-x
- Sajid M., Khan M.S.A., Cameotra S.S., Al-Thubiani A.S. // Immunol. Lett. 2020. V. 223. P. 71–77. https://doi.org/10.1016/j.imlet.2020.04.003
- Penha R.O., Vandenberghe L.P.S., Faulds C., Soccol V.T., Soccol C.R. // Planta. 2020. V. 251. P. 70. https://doi.org/10.1007/s00425-020-03357-7
- Jahan R., Bodratti A.M., Tsianou M., Alexandridis P. // Adv. Colloid Interface Sci. 2020. V. 275. P. 102061. https://doi.org/10.1016/j.cis.2019.102061
- Fenibo E.O., Ijoma G.N., Selvarajan R., Chikere C.B. // Microorganisms. 2019. V. 7. P. 581. https://doi.org/10.3390/microorganisms7110581
- Zanotto A.W., Valério A., De Andrade C.J., Pastore G.M. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 8647–8656. https://doi.org/10.1007/s00253-019-10123-7
- Kaspar F., Neubauer P., Gimpel M. // J. Nat. Prod. 2019. V. 82. P. 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110
- Hu F., Liu Y., Li S. // Microb. Cell Fact. 2019. V. 18. P. 42. https://doi.org/10.1186/s12934-019-1089-x
- Patel S., Homaei A., Patil S., Daverey A. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 27–37. https://doi.org/10.1007/s00253-018-9434-2
- Hayes D.G., Solaiman D.K., Ashby R.D. // Biobased Surfactants. Amsterdam: Elsevier, 2019. https://doi.org/10.1016/C2016-0-03179-0
- Zhao P., Xue Y., Gao W., Li J., Zu X., Fu D., Bai X., Zuo Y., Hu Z., Zhang F. // Peptides. 2018. V. 101. P. 10–16. https://doi.org/10.1016/j.peptides.2017.12.018
- Santos V.S.V., Silveira E., Pereira B.B. // J. Toxicol. Environ. Health B Crit. Rev. 2018. V. 21. P. 382–399. https://doi.org/10.1080/10937404.2018.1564712
- Wu Y.-S., Ngai S.-C., Goh B.-H., Chan K.-G., Lee L.-H., Chuah L.-H. // Front. Pharmacol. 2017. V. 8. P. 761. https://doi.org/10.3389/fphar.2017.00761
- Najmi Z., Ebrahimipour G., Franzetti A., Banat I.M. // Biotechnol. Appl. Biochem. 2018. V. 65. P. 523–532. https://doi.org/10.1002/bab.1641
- Zhao H., Shao D., Jiang C., J Shi J., Li Q., Huang Q., Rajoka M.S.R., Yang H., Jin M. // Appl. Microbiol. Biotechnol. 2017. V. 101. P. 5951–5960. https://doi.org/10.1007/s00253-017-8396-0
- Henkel M., Geissler M., Weggenmann F., Hausmann R. // Biotechnol. J. 2017. V. 12. P. 1600561. https://doi.org/10.1002/biot.201600561
- Otzen D.E. // Biochim. Biophys. Acta Biomembr. 2017. V. 1859. P. 639–649. https://doi.org/10.1016/j.bbamem.2016.09.024
- Fira D., Dimkić I., Berić T., Lozo J., Stanković S. // J. Biotechnol. 2018. V. 285. P. 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
- Bonmatin J.M., Genest M., Labbé H., Ptak M. // Biopolymers. 1994. V. 34. P. 975–986. https://doi.org/10.1002/bip.360340716
- Ishigami Y., Osman M., Nakahara H., Sano Y., Ishiguro R., Matsumoto M. // Colloids Surfaces B Biointerfaces. 1995. V. 4. P. 341–348. https://doi.org/10.1016/0927-7765(94)01183-6
- Соболева О.А., Царькова Л.А. // Коллоид. журнал. 2020. Т. 82. С. 476–487. https://doi.org/10.31857/S002329122004014X
- Dufour S., Deleu M., Nott K., Wathelet B., Thonart P., Paquot M. // Biochim. Biophys. Acta. 2005. V. 1726. P. 87–95. https://doi.org/10.1016/j.bbagen.2005.06.015
- Liu X.-Y., Yang S.-Z., Mu B.-Z. // Process Biochem. 2009. V. 44. P. 1144–1151. https://doi.org/10.1016/j.procbio.2009.06.014
- Liu J.-F., Yang J., Yang S.-Z., Ye R.-Q., Mu B.-Z. // Appl. Biochem. Biotechnol. 2012. V. 166. P. 2091– 2100. https://doi.org/10.1007/s12010-012-9636-5
- Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J. // J. Antibiot. 1999. V. 52. P. 613–619. https://doi.org/10.7164/antibiotics.52.613
- Hu F., Cai W., Lin J., Wang W., Li S. // Microb. Cell Fact. 2021. V. 20. P. 96. https://doi.org/10.1186/s12934-021-01585-4
- DeSanto K., Keer D.R. // Patent Application US2012255918A1, 2012.
- Desanto K. // Patent EP2046930A2, 2012.
- Lu J.-K., Wang H.-M., Xu X.-R. // Patent US9364413B2, 2016.
- Park H.-S. // Patent KR101501286B1, 2015.
- Bueno-Mancebo J., Barrena R., Artola A., Gea T., Altmajer-Vaz D. // Int. J. Cosmet. Sci. 2024. V. 46. P. 702–716. https://doi.org/10.1111/ics.12957
- Schloesser T., Jakupuvic S., Katzer W., Kluge G., Siems K. // Int. Patent Application WO2013037818A3, 2014.
- Lewińska A., Domżał-Kędzia M., Jaromin A., Łukaszewicz M. // Pharmaceutics. 2020. V. 12. P. 953. https://doi.org/10.3390/pharmaceutics12100953
- Leighton A. // Patent US8592381B2, 2013.
- Green Sustainable Process for Chemical and Environmental Engineering and Science / Ed. Altalhi T. Amsterdam: Elsevier, Chapter 5, 2023.
- Ben Ayed H., Nasri R., Jemil N., Amor I.B., Gargouri J., Hmidet N., Nasri M. // Chem. Biol. Interact. 2015. V. 236. P. 1–6. https://doi.org/10.1016/j.cbi.2015.04.018
- Dehghan-Noude G., Housaindokht M., Bazzaz B.S.F. // J. Microbiol. 2005. V. 43. P. 272–276.
- Fei D., Liu F.-F., Gang H.-Z., Liu J.-F., Yang S.-Z., Ye R.-Q., Mu B.-Z. // Process Biochem. 2020. V. 94. P. 164–171. https://doi.org/10.1016/j.procbio.2020.04.022
- Johnson P., Trybala A., Starov V., Pinfield V.J. // Adv. Colloid Interface Sci. 2021. V. 288. P. 102340. https://doi.org/10.1016/j.cis.2020.102340
- Surfactants market. https://www.marketsandmarkets.com/Market-Reports/biosurfactants-market-493.html
- Lima T.M.S., Procópio L.C., Brandão F.D., Carvalho A.M.X., Tótola M.R., Borges A.C. // Biodegradation. 2011. V. 22. P. 585–592. https://doi.org/10.1007/s10532-010-9431-3
- Hoefler B.C., Gorzelnik K.V., Yang J.Y., Hendricks N., Dorrestein P.C., Straight P.D. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 13082–13087. https://doi.org/10.1073/pnas.1205586109
- Shao C., Liu L., Gang H., Yang S., Mu B. // Int. J. Mol. Sci. 2015. V. 16. P. 1855–1872. https://doi.org/10.3390/ijms16011855
- Morikawa M., Hirata Y., Imanaka T. // Biochim. Biophys. Acta. 2000. V. 1488. P. 211–218. https://doi.org/10.1016/s1388-1981(00)00124-4
- Pagadoy M., Peypoux F., Wallach J. // Int. J. Pept. Res. Ther. 2005. V. 11. P. 195–202. https://doi.org/10.1007/s10989-005-6790-4
- Francius G., Dufour S., Deleu M., Paquot M., MingeotLeclercq M.-P., Dufrêne Y.F. // Biochim. Biophys. Acta. 2008. V. 1778. P. 2058–2068. https://doi.org/10.1016/j.bbamem.2008.03.023
- Bozhüyük K.A.J., Linck A., Tietze A., Kranz J., Wesche F., Nowak S., Fleischhacker F., Shi Y.-N., Grün P., Bode H.B. // Nat. Chem. 2019. V. 11. P. 653–661. https://doi.org/10.1038/s41557-019-0276-z
- Peypoux F., Bonmatin J.M., Wallach J. // Appl. Microbiol. Biotechnol. 1999. V. 51. P. 553–563. https://doi.org/10.1007/s002530051432
- Hsieh F.-C., Li M.-C., Lin T.-C., Kao S.-S. // Curr. Microbiol. 2004. V. 49. P. 186–191. https://doi.org/10.1007/s00284-004-4314-7
- Chen W.-C., Juang R.-S., Wei Y.-H. // Biochem. Engineer. J. 2015. V. 103. P. 158–169. https://doi.org/10.1016/j.bej.2015.07.009
- Liu Q., Lin J., Wang W., Huang H., Li S. // Biochem. Engineer. J. 2015. V. 93. P. 31–37. https://doi.org/10.1016/j.bej.2014.08.023
- Zhu L., Xu Q., Jiang L., Huang H., Li S. // PLoS One. 2014. V. 9. P. e88207. https://doi.org/10.1371/journal.pone.0088207
- Yang H., Yu H., Shen Z. // J. Industr. Microbiol. Biotechnol. 2015. V. 42. P. 1139–1147. https://doi.org/10.1007/s10295-015-1635-4
- Мелентьев А.И., Кузьмина Л.Ю., Яковлева О.В., Курченко В.П. // Патент RU2270858C2, 2006.
- De Andrade C.J., Barros F.F.C., de Andrade L.M., Rocco S.A., Sforça M.L., Pastore G.M., Jauregi P. // J. Chem. Tech. Biotech. 2016. V. 91. P. 3018–3027. https://doi.org/10.1002/jctb.4928
- Abdelraof M., Nooman M.U., Hashem A.H., Alkashef A.S. // BMC Microbiol. 2024. V. 24. P. 193. https://doi.org/10.1186/s12866-024-03338-w
- Janek T., Gudiña E.J., Połomska X., Biniarz P., Jama D., Rodrigues L.R., Rymowicz W., Lazar Z. // Molecules. 2021. V. 26. P. 3488. https://doi.org/10.3390/molecules26123488
- Willenbacher J., Yeremchuk W., Mohr T., Syldatk C., Hausmann R. // AMB Expr. 2015. V. 5. P. 57. https://doi.org/10.1186/s13568-015-0145-0
- Abdel-Mawgoud A.M., Aboulwafa M.M., Hassouna N.A.-H. // Appl. Biochem. Biotechnol. 2008. V. 150. P. 305–325. https://doi.org/10.1007/s12010-008-8155-x
- Koim-Puchowska B., Kłosowski G., Dróżdż-Afelt J.M., Mikulski D., Zielińska A. // Molecules. 2021. V. 26. P. 2985. https://doi.org/10.3390/molecules26102985
- De Oliveira Schmidt V.K., de Souza Carvalho J., de Oliveira D., de Andrade C.J. // World J. Microbiol. Biotechnol. 2021. V. 37. P. 21. https://doi.org/10.1007/s11274-020-02970-8
- De Oliveira Schmidt V.K., Durant Moraes P.A., Cesca K., Soares Pereira L.P., de Andrade L.M., Mendes M.A., de Oliveira D., de Andrade C.J. // World J. Microbiol. Biotechnol. 2023. V. 39. P. 82. https://doi.org/10.1007/s11274-023-03529-z
- Geissler M., Kühle I., Heravi K.M., Altenbuchner J., Henkel M., Hausmann R. // AMB Expr. 2019. V. 9. P. 84.
- Wu Q., Zhi Y., Xu Y. // Metab. Eng. 2019. V. 52. P. 87–97. https://doi.org/10.1016/j.ymben.2018.11.004
- Guo Z., Sun J., Ma Q., Li M., Dou Y., Yang S., Gao X. // Microorganisms. 2024. V. 12. P. 998. https://doi.org/10.3390/microorganisms12050998
- Nakano M.M., Corbell N., Besson J., Zuber P. // Mol. Gen. Genet. 1992. V. 232. P. 313–321. https://doi.org/10.1007/BF00280011
- Nakano M.M., Magnuson R., Myers A., Curry J., Grossman A.D., Zuber P. // J. Bacteriol. 1991. V. 173. P. 1770–1778. https://doi.org/10.1128/jb.173.5.1770-1778.1991
- Трефилов В.С., Лабанов В.А., Хренова М.Г., Панова Т.В., Родин В.А., Савицкая В.Ю., Кубарева Е.А., Зверева М.Э. // Биотехнология. 2023. Т. 39. С. 61–69. https://doi.org/10.56304/S0234275823050125
- Zhi Y., Wu Q., Xu Y. // Sci. Rep. 2017. V. 7. P. 40976. https://doi.org/10.1038/srep40976
- Zhao J., Li Y., Zhang C., Yao Z., Zhang L., Bie X., Lu F., Lu Z. // J. Ind. Microbiol. Biotechnol. 2012. V. 39. P. 889–896. https://doi.org/10.1007/s10295-012-1098-9
- Liu X., Ren B., Chen M., Wang H., Kokare C.R., Zhou X., Wang J., Dai H., Song F., Liu M., Wang J., Wang S., Zhang L. // Appl. Microbiol. Biotechnol. 2010. V. 87. P. 1881–1893. https://doi.org/10.1007/s00253-010-2653-9
- Lin S.-C., Lin K.-G., Lo C.-C., Lin Y.-M. // Enzyme Microb. Technol. 1998. V. 23. P. 267–273. https://doi.org/10.1016/S0141-0229(98)00049-0
- Pekin G., Vardar-Sukan F., Kosaric N. // Eng. Life Sci. 2005. V. 5. P. 357–362. https://doi.org/10.1002/elsc.200520086
- Klausmann P., Hennemann K., Hoffmann M., Treinen C., Aschern M., Lilge L., Heravi K.M., Henkel M., Hausmann R. // Appl. Microbiol. Biotechnol. 2021. V. 105. P. 4141–4151. https://doi.org/10.1007/s00253-021-11330-x
- Ali N., Pang Z., Wang F., Xu B., El-Seedi H.R. // J. Food Quality. 2022. V. 2022. P. 1–19. https://doi.org/10.1155/2022/3930112
- Nanjundan J., Ramasamy R., Uthandi S., Ponnusamy M. // Microb. Pathog. 2019. V. 128. P. 374–380. https://doi.org/10.1016/j.micpath.2019.01.037
- Barale S.S., Ghane S.G., Sonawane K.D. // AMB Expr. 2022. V. 12. P. 7. https://doi.org/10.1186/s13568-022-01348-3
- Yu F., Du Y., Deng S., Jin M., Zhang D., Zhao M., Yin J., Long X. // Separ. Purif. Technol. 2023. V. 304. P. 122278. https://doi.org/10.1016/j.seppur.2022.122278
- Hiraoka H., Asaka O., Ano T., Shoda M. // J. Gen. Appl. Microbiol. 1992. V. 38. P. 635–640. https://doi.org/doi.org/10.2323/jgam.38.635
- Mubarak M.Q.E., Hassan A.R., Hamid A.A., Khalil S., Isa M.H.M. // JSM. 2015. V. 44. P. 115–120.
- Al-Ajlani M.M., Sheikh M.A., Ahmad Z., Hasnain S. // Microb. Cell Fact. 2007. V. 6. P. 17. https://doi.org/10.1186/1475-2859-6-17
- Santa Cruz Biotechnology. https://www.scbt.com/p/surfactin-24730-31-2?srsltid =AfmBOop_AbaPbhmuC3HSUOLueKLiqB3jr_7vF5yqnKaErYNC57Ncdc8d
- Sigma-Aldrich. https://www.sigmaaldrich.com/RU/en/product/sigma/s3523.
- Focus Вiomolecules. https://focusbiomolecules.com/surfactin-lipopeptide-biosurfactant/
- De Faria A.F., Teodoro-Martinez D.S., de Oliveira Barbosa G.N., Vaz B.G., Silva I.S., Garcia J.S., Tótola M.R., Eberlin M.N., Grossman M., Alves O.L., Durrant L.R. // Process Biochem. 2011. V. 46. P. 1951– 1957. https://doi.org/10.1016/j.procbio.2011.07.001
- Dlamini B., Rangarajan V., Clarke K.G. // Biocatal. Agricult. Biotechnol. 2020. V. 25. P. 101587. https://doi.org/10.1016/j.bcab.2020.101587
- United Nations Office on Drugs and Crime // Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens. United Nations, New York, 2009.
- Ghorbani S., Sonboli A., Ebrahimi S.N., Mirjalili M.H. // Biocatal. Agricult. Biotechnol. 2020. V. 25. P. 101585. https://doi.org/10.1016/j.bcab.2020.101585
- Jamshidi-Aidji M., Dimkić I., Ristivojević P., Stanković S., Morlock G.E. // J. Chromatogr. A. 2019. V. 1605. P. 460366. https://doi.org/10.1016/j.chroma.2019.460366
- Merck HPTLC. https://www.merckmillipore.com/RU/ru/analytics-sample-preparation/learning-center-thin-layer-chromatography/hptlc/NGub.qB.fCoAAAFVPmJDx07N,nav.
- Pharmatutor. https://www.pharmatutor.org/articles/high-performance-thin-layer-chromatography-hptlc-nstrumentation-overview
- Geissler M., Oellig C., Moss K., Schwack W., Henkel M., Hausmann R. // J. Chromatogr. B. 2017. V. 1044–1045. P. 214–224. https://doi.org/10.1016/j.jchromb.2016.11.013
- Yang H., Li X., Li X., Yu H., Shen Z. // Anal. Bioanal. Chem. 2015. V. 407. P. 2529–2542. https://doi.org/10.1007/s00216-015-8486-8
- Grangemard I., Peypoux F., Wallach J., Das B.C., Labbé H., Caille A., Genest M., Maget-Dana R., Ptak M., Bonmatin J.-M. // J. Peptide Sci. 1997. V. 3. P. 145–154. https://doi.org/10.1002/(SICI)1099-1387(199703)3: 2<145::AID-PSC96>3.0.CO;2-Y
- Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D. // J. Colloid Interface Sci. 1998. V. 204. P. 1–8. https://doi.org/10.1006/jcis.1998.5558
- Ahimou F., Jacques P., Deleu M. // Enzyme Microb. Technol. 2000. V. 27. P. 749–754. https://doi.org/10.1016/S0141-0229(00)00295-7
- Das P., Mukherjee S., Sen R. // J. Appl. Microbiol. 2008. V. 104. P. 1675–1684. https://doi.org/10.1111/j.1365-2672.2007.03701.x
- Nakayama S., Takahashi S., Hirai M., Shoda M. // Appl. Microbiol. Biotechnol. 1997. V. 48. P. 80–82. https://doi.org/10.1007/s002530051018
- Sarwar A., Hassan M.N., Imran M., Iqbal M., Majeed S., Brader G., Sessitsch A., Hafeez Y.F. // Microbiol. Res. 2018. V. 209. P. 1–13. https://doi.org/10.1016/j.micres.2018.01.006
- Li Y., Yang S., Mu B. // Anal. Lett. 2010. V. 43. P. 929– 940. https://doi.org/10.1080/00032710903491047
- Kinsella K., Schulthess C.P., Morris T.F., Stuart J.D. // Soil Biol. Biochem. 2009. V. 41. P. 374–379. https://doi.org/10.1016/j.soilbio.2008.11.019
- Loiseau C., Schlusselhuber M., Bigot R., Bertaux J., Berjeaud J.-M., Verdon J. // Appl. Microbiol. Biotechnol. 2015. V. 99. P. 5083–5093. https://doi.org/10.1007/s00253-014-6317-z
- Isa M.H.M., Shamsudin N.H., Al-Shorgani N.K.N., Alsharjabi F.A., Kalil M.S. // Food Biotechnol. 2020. V. 34. P. 1–24. https://doi.org/10.1080/08905436.2019.1710843
- Zhou Y., Yang X., Li Q., Peng Z., Li J., Zhang J. // BMC Microbiol. 2023. V. 23. P. 117. https://doi.org/10.1186/s12866-023-02838-5
- Rangarajan V., Clarke K.G. // Process Biochem. 2016. V. 51. P. 2176–2185. https://doi.org/10.1016/j.procbio.2016.08.026
- Jun Y., Waseem R., Qiwei H., Qirong S. // J. Chromatogr. B. 2011. V. 879. P. 2746–2750. https://doi.org/10.1016/j.jchromb.2011.07.041
- Deng Q., Wang W., Sun L., Wang Y., Liao J., Xu D., Liu Y., Ye R., Gooneratne R. // Anal. Bioanal. Chem. 2017. V. 409. P. 179–191. https://doi.org/10.1007/s00216-016-9984-z
- Томашевич Н.С., Сидорова Т.М., Аллахвердян В.В., Асатурова А.М. // Юг России: экология, развитие. 2023. Т. 67. С. 70–81. https://doi.org/10.18470/1992-1098-2023-2-70-81
- Vater J., Kablitz B., Wilde C., Franke P., Mehta N., Cameotra S.S. // Appl. Environ. Microbiol. 2002. V. 68. P. 6210–6219. https://doi.org/10.1128/AEM.68.12.6210-6219.2002
- Doherty J.R., Roberts J.A. // Plant Dis. 2023. V. 107. P. 2346–2351. https://doi.org/10.1094/PDIS-07-22-1629-RE
- Thompson D.N., Fox S.L., Bala G.A. // ABAB. 2000. V. 84–86. P. 917–930. https://doi.org/10.1007/978-1-4612-1392-5_71
- Jha S.S., Joshi S.J., Geetha S.J. // Braz. J. Microbiol. 2016. V. 47. P. 955–964. https://doi.org/10.1016/j.bjm.2016.07.006
- Kumar A., Saini P., Shrivastava J.N. // Indian J. Exp. Biol. 2009. V. 47. P. 57–62.
- Zongwang M., Songya Z., Shihu Z., Guoyang W., Yue S., Quanfeng M., Junyu L., Kun S., Jiangchun H. // J. Antibiot. 2020. V. 73. P. 863–867. https://doi.org/10.1038/s41429-020-0347-9
- Vass E., Besson F., Majer Z., Volpon L., Hollósi M. // Biochem. Biophys. Res. Commun. 2001. V. 282. P. 361–367. https://doi.org/10.1006/bbrc.2001.4469
- Ferré G., Besson F., Buchet R. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997. V. 53. P. 623–635. https://doi.org/10.1016/S1386-1425(96)01787-8
- Zhang J., Li Y. // Int. J. Biol. Macromol. 2018. V. 118. P. 244–251. https://doi.org/10.1016/j.ijbiomac.2018.06.051
- Augustyn A.R., Pott R.W.M., Tadie M. // Colloids Surf. A Physicochem. Eng. Aspects. 2021. V. 627. P. 127122. https://doi.org/10.1016/j.colsurfa.2021.127122
- Carrillo C., Teruel J.A., Aranda F.J., Ortiz A. // Biochim. Biophys. Acta. 2003. V. 1611. P. 91–97. https://doi.org/10.1016/s0005-2736(03)00029-4
- Park G., Nam J., Kim J., Song J., Kim P.I., Jung Min H., Won Lee C. // Bull. Korean Chem. Soc. 2019. V. 40. P. 704–709. https://doi.org/10.1002/bkcs.11757
- Zhou G.F., Yang L., Zhang S.H., Wang Y., Yang Y., Xu R., Zhao X., Nie D., Shan J., Cui C.B., Li C.W. // Nat. Prod. Res. 2022. V. 36. P. 5222–5227. https://doi.org/10.1080/14786419.2021.1926457
- Tsan P., Volpon L., Besson F., Lancelin J.-M. // J. Am. Chem. Soc. 2007. V. 129. P. 1968–1977. https://doi.org/10.1021/ja066117q
- Stein T. // Rapid Commun. Mass Spectrom. 2008. V. 22. P. 1146–1152. https://doi.org/10.1002/rcm.3481
- Moro G.V., Almeida R.T.R., Napp A.P., Porto C., Pilau E.J., Lüdtke D.S., Moro A.V., Vainstein M.H. // Microb. Biotechnol. 2018. V. 11. P. 759–769. https://doi.org/10.1111/1751-7915.13276
- Luzzatto-Knaan T., Melnik A.V., Dorrestein P.C. // ACS Chem. Biol. 2019. V. 14. P. 459–467. https://doi.org/10.1021/acschembio.8b01120
Supplementary files
