Characterization of combined effects of reactive oxygen metabolites, complement system, and antimicrobial peptides In Vitro
- Authors: Krenev I.A.1, Egorova E.V.1,2, Gorbunov N.P.1,3, Kostevich V.A.1, Sokolov A.V.1,2, Komlev A.S.1, Zabrodskaya Y.A.4,5, Shamova O.V.1,2, Berlov M.N.1,2
-
Affiliations:
- Institute of Experimental Medicine
- St. Petersburg State University
- St. Petersburg Pasteur Research Institute of Epidemiology and Microbiology
- Peter the Great St. Petersburg Polytechnic University
- A. A. Smorodintsev Research Institute of Influenza
- Issue: Vol 51, No 1 (2025)
- Pages: 3-18
- Section: Articles
- URL: https://innoscience.ru/0132-3423/article/view/683092
- DOI: https://doi.org/10.31857/S0132342325010016
- EDN: https://elibrary.ru/MABDQX
- ID: 683092
Cite item
Abstract
Phagocytes activation results in the production of reactive oxygen metabolites (ROM) exerting antimicrobial and host-damaging activity. Although the main pool of papers shows their potentiating action on a key humoral nexus of innate immunity, complement system, the data are controversial. Combined action of ROM with antimicrobial peptides of phagocytes also remains poorly characterized. We have investigated the influence of oxidative burst products on complement activation in different in vitro models. Hydrogen peroxide, including that in medium with Fe-EDTA did not affect parameters of complement activity in human blood serum. HOCl in millimolar concentrations stimulated production of C3a and C5a anaphylatoxins in 80% serum, the effect was inhibited by EDTA. We have identified bivalent ions-independent C5 cleavage in the presence of 16 mM HOCl. At the same time, HOCl served as an inhibitor of the alternative complement pathway in the model of surface-associated activation on rabbit erythrocytes in 5% serum. It inhibited production of C3a (IC50 ~ 4 mM) and C5a as well as serum hemolytic activity (IC50 ~ 0.2 mM); the inhibition of C5a generation was less pronounced in the presence of 4–16 mM HOCl. Decrease in anaphylatoxins generation was also observed in the system with zymosan in 5% serum. Under similar conditions but without activating surfaces, moderate HOCl concentrations enhanced C3a and C5a accumulation; EDTA inhibited this effect completely (C3a) or partially (C5a). Finally, in 70% serum, 16 mM HOCl enhanced the anaphylatoxins accumulation but in the presence of zymosan it inhibited this process almost completely. We hypothesize that HOCl can attack the thioester bond in C3 protein to form C3(HOCl) adduct which is capable of fluid-phase convertases formation; however, the attack of C3b can prevent its covalent fixation on membranes and blocks the complement amplification loop. Besides, we have demonstrated the additive character of the combined action of HOCl with antimicrobial peptides (LL-37 cathelicidin and α-defensins) towards Listeria monocytogenes and Escherichia coli. The data obtained precise the picture of the interaction between bactericidal factors of phagocytes and complement as key participants of the immune defense and host damage.
Full Text

About the authors
I. A. Krenev
Institute of Experimental Medicine
Author for correspondence.
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg
E. V. Egorova
Institute of Experimental Medicine; St. Petersburg State University
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
N. P. Gorbunov
Institute of Experimental Medicine; St. Petersburg Pasteur Research Institute of Epidemiology and Microbiology
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
V. A. Kostevich
Institute of Experimental Medicine
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg
A. V. Sokolov
Institute of Experimental Medicine; St. Petersburg State University
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
A. S. Komlev
Institute of Experimental Medicine
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg
Y. A. Zabrodskaya
Peter the Great St. Petersburg Polytechnic University; A. A. Smorodintsev Research Institute of Influenza
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
O. V. Shamova
Institute of Experimental Medicine; St. Petersburg State University
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
M. N. Berlov
Institute of Experimental Medicine; St. Petersburg State University
Email: il.krenevv13@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
References
- Uribe-Querol E., Rosales C. // Front. Immunol. 2020. V. 11. P. 1066. https://doi.org/10.3389/fimmu.2020.01066
- Burn G.L., Foti A., Marsman G., Patel D.F., Zychlinsky A. // Immunity. 2021. V. 54. P. 1377–1391. https://doi.org/10.1016/j.immuni.2021.06.006
- Katsuyama M. // J. Pharmacol. Sci. 2010. V. 114. P. 134–146. https://doi.org/10.1254/jphs.10r01cr
- Zheng M., Liu Y., Zhang G., Yang Z., Xu W., Chen Q. // Antioxidants (Basel). 2023. V. 12. P. 1675. https://doi.org/10.3390/antiox12091675
- Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A., Plou F.J., Pérez-Lebeña E. // Stresses. 2022. V. 2. P. 256–274. https://doi.org/10.3390/stresses2030019
- Aratani Y. // Arch. Biochem. Biophys. 2018. V. 640. P. 47–52. https://doi.org/10.1016/j.abb.2018.01.004
- Arnhold J. // Int. J. Mol. Sci. 2020. V. 21. P. 8057. https://doi.org/10.3390/ijms21218057
- Pattison D.I., Davies M.J. // Chem. Res. Toxicol. 2001. V. 14. P. 1453–1464. https://doi.org/10.1021/tx0155451
- Weiss S.J. // N. Engl J. Med. 1989. V. 320. P. 365–376. https://doi.org/10.1056/NEJM198902093200606
- Huan Y., Kong Q., Mou H., Yi H. // Front. Microbiol. 2020. V. 11. P. 582779. https://doi.org/10.3389/fmicb.2020.582779
- Lehrer R. I., Lu W. // Immunol. Rev. 2012. V. 245. P. 84–112. https://doi.org/10.1111/j.1600-065X.2011.01082.x
- Ridyard K.E., Overhage J. // Antibiotics (Basel). 2021. V. 10. P. 650. https://doi.org/10.3390/antibiotics10060650
- Ricklin D., Reis E.S., Mastellos D.C., Gros P., Lambris J.D. // Immunol. Rev. 2016. V. 274. P. 33–58. https://doi.org/10.1111/imr.12500
- Tack B.F., Harrison R.A., Janatova J., Thomas M.L., Prahl J.W. // Proc. Natl. Acad. Sci. USA. 1980. V. 77. P. 5764–5768. https://doi.org/10.1073/pnas.77.10.5764
- Law S.K., Dodds A.W. // Protein. Sci. 1997. V. 6. P. 263– 274. https://doi.org/10.1002/pro.5560060201
- Shokal U., Eleftherianos I. // Front. Immunol. 2017. V. 8. P. 759. https://doi.org/10.3389/fimmu.2017.00759
- Forneris F., Ricklin D., Wu J., Tzekou A., Wallace R.S., Lambris J.D., Gros P. // Science. 2010. V. 330. P. 1816– 1820. https://doi.org/10.1126/science.1195821
- Fearon D.T., Austen K.F. // J. Exp. Med. 1975. V. 142. P. 856–863. https://doi.org/10.1084/jem.142.4.856
- Lachmann P.J., Lay E., Seilly D.J. // FASEB J. 2018. V. 32. P. 123–129. https://doi.org/10.1096/fj.201700734
- Xie C.B., Jane-Wit D., Pober J.S. // Am. J. Pathol. 2020. V. 190. P. 1138–1150. https://doi.org/10.1016/j.ajpath.2020.02.006
- D’Autréaux B., Toledano M.B. // Nat. Rev. Mol. Cell Biol. 2007. V. 8. P. 813–824. https://doi.org/10.1038/nrm2256
- Ricklin D., Hajishengallis G., Yang K., Lambris J.D. // Nat. Immunol. 2010. V. 11. P. 785–797. https://doi.org/10.1038/ni.1923
- Hawksworth O.A., Coulthard L.G., Woodruff T.M. // Mol. Immunol. 2017. V. 84. P. 17–25. https://doi.org/10.1016/j.molimm.2016.11.010
- Alfadda A.A., Sallam R.M. // J. Biomed. Biotechnol. 2012. P. 936486. https://doi.org/10.1155/2012/936486
- Gierlikowska B., Stachura A., Gierlikowski W., Demkow U. // Front. Pharmacol. 2021. V. 12. P. 666732. https://doi.org/10.3389/fphar.2021.666732
- Mastellos D.C., Hajishengallis G., Lambris J.D. // Nat. Rev. Immunol. 2024. V. 24. P. 118–141. https://doi.org/10.1038/s41577-023-00926-1
- Goldstein I.M., Weissmann G. // J. Immunol. 1974. V. 113. P. 1583–1588. https://doi.org/10.4049/jimmunol.113.5.1583
- Johnson U., Ohlsson K., Olsson I. // Scand. J. Immunol. 1976. V. 5. P. 421–426. https://doi.org/10.1111/j.1365-3083.1976.tb00296.x
- Orr F.W., Varani J., Kreutzer D.L., Senior R.M., Ward P.A. // Am. J. Pathol. 1979. V. 94. P. 75–83.
- Taylor J.C., Crawford I.P., Hugli T.E. // Biochemistry. 1977. V. 16. P. 3390–3396. https://doi.org/10.1021/bi00634a016
- Venge P., Olsson I. // J. Immunol. 1975. V. 115. P. 1505–1508. https://doi.org/10.4049/jimmunol.115.6.1505
- Vogt W. // Immunobiology. 2000. V. 201. P. 470–477. https://doi.org/10.1016/S0171-2985(00)80099-6
- Ward P.A., Hill J.H. // J. Immunol. 1970. V. 104. P. 535– 543. https://doi.org/10.4049/jimmunol.104.3.535
- Кренев И.А., Берлов М.Н., Умнякова Е.С. // Иммунология. 2021. Т. 42. С. 426–433. https://doi.org/10.33029/0206-4952-2021-42-4-426-433
- van den Berg R.H., Faber-Krol M.C., van Wetering S., Hiemstra P.S., Daha M.R. // Blood. 1998. V. 92. P. 3898–3903. https://doi.org/10.1182/blood.V92.10.3898
- Groeneveld T.W., Ramwadhdoebé T.H., Trouw L.A., van den Ham D.L., van der Borden V., Drijfhout J.W., Hiemstra P.S., Daha M.R., Roos A. // Mol. Immunol. 2007. V. 44. P. 3608–3614. https://doi.org/10.1016/j.molimm.2007.03.003
- Nordahl E.A., Rydengård V., Nyberg P., Nitsche D.P., Mörgelin M., Malmsten M., Björck L., Schmidtchen A. // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 16879– 16884. https://doi.org/10.1073/pnas.0406678101
- Sonesson A., Ringstad L., Nordahl E.A., Malmsten M., Mörgelin M., Schmidtchen A. // Biochim. Biophys. Acta. 2007. V. 1768. P. 346–353. https://doi.org/10.1016/j.bbamem.2006.10.017
- Pasupuleti M., Walse B., Nordahl E.A., Mörgelin M., Malmsten M., Schmidtchen A. // J. Biol. Chem. 2007. V. 282. P. 2520–2528. https://doi.org/10.1074/jbc.M607848200
- Shingu M., Nobunaga M. // Am. J. Pathol. 1984. V. 117. P. 201–206.
- Shingu M., Nonaka S., Nishimukai H., Nobunaga M., Kitamura H., Tomo-Oka K. // Clin. Exp. Immunol. 1992. V. 90. P. 72–78. https://doi.org/10.1111/j.1365-2249.1992.tb05834.x
- Vogt W., Damerau B., von Zabern I., Nolte R., Brunahl D. // Mol. Immunol. 1989. V. 26. P. 1133–1142. https://doi.org/10.1016/0161-5890(89)90057-6
- Vogt W., Zimmermann B., Hesse D., Nolte R. // Mol. Immunol. 1992. V. 29. P. 251–256. https://doi.org/10.1016/0161-5890(92)90106-8
- Vogt W., Hesse D. // Immunobiology. 1992. V. 184. P. 384–391. https://doi.org/10.1016/S0171-2985(11)80595-4
- Vogt W. // Immunobiology. 1996. V. 195. P. 334–346. https://doi.org/10.1016/S0171-2985(96)80050-7
- Clark R.A., Klebanoff S.J. // J. Clin. Invest. 1979. V. 64. P. 913–920. https://doi.org/10.1172/JCI109557
- Coble B.I., Dahlgren C., Hed J., Stendahl O. // Biochim. Biophys. Acta. 1984. V. 802. P. 501–505. https://doi.org/10.1016/0304-4165(84)90369-6
- Miller T.E. // J. Bacteriol. 1969. V. 98. P. 949–955. https://doi.org/10.1128/jb.98.3.949-955.1969
- Lichtenstein A.K., Ganz T., Selsted M.E., Lehrer R.I. // Cell. Immunol. 1988. V. 114. P. 104–116. https://doi.org/10.1016/0008-8749(88)90258-4
- Vissers M.C., Winterbourn C.C. // Biochem. J. 1987. V. 245. P. 277–280. https://doi.org/10.1042/bj2450277
- Shao B., Belaaouaj A., Verlinde C.L., Fu X., Heinecke J.W. // J. Biol. Chem. 2005. V. 280. P. 29311– 29321. https://doi.org/10.1074/jbc.M504040200
- Hawkins C.L., Davies M.J. // Chem. Res. Toxicol. 2005. V. 18. P. 1600–1610. https://doi.org/10.1021/tx050207b
- Krishna H., Avinash K., Shivakumar A., Al-Tayar N.G.S., Shrestha A.K. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021. V. 251. P. 119358. https://doi.org/10.1016/j.saa.2020.119358
- Peffault de Latour R., Brodsky R.A., Ortiz S., Risitano A.M., Jang J.H., Hillmen P., Kulagin A.D., Kulasekararaj A.G., Rottinghaus S.T., Aguzzi R., Gao X., Wells R.A., Szer J. // Br. J. Haematol. 2020. V. 191. P. 476–485. https://doi.org/10.1111/bjh.16711
- Forman H.J., Bernardo A., Davies K.J. // Arch. Biochem. Biophys. 2016. V. 603. P. 48–53. https://doi.org/10.1016/j.abb.2016.05.005
- Pravda J. // Mol. Med. 2020. V. 26. P. 41. https://doi.org/10.1186/s10020-020-00165-3
- Lipcsey M., Bergquist M., Sirén R., Larsson A., Huss F., Pravda J., Furebring M., Sjölin J., Janols H. // Biomedicines. 2022. V. 10. P. 848. https://doi.org/10.3390/biomedicines10040848
- Huber-Lang M., Ekdahl K.N., Wiegner R., Fromell K., Nilsson B. // Semin. Immunopathol. 2018. V. 40. P. 87– 102. https://doi.org/10.1007/s00281-017-0646-9
- Weiss S.J., Peppin G., Ortiz X., Ragsdale C., Test S.T. // Science. 1985. V. 227. P. 747–749. https://doi.org/10.1126/science.2982211
- Peppin G.J., Weiss S.J. // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 4322–4326. https://doi.org/10.1073/pnas.83.12.4322
- Fu X., Kassim S.Y., Parks W.C., Heinecke J.W. // J. Biol. Chem. 2001. V. 276. P. 41279–41287. https://doi.org/10.1074/jbc.M106958200
- Wang Y., Rosen H., Madtes D.K., Shao B., Martin T.R., Heinecke J.W., Fu X. // J. Biol. Chem. 2007. V. 282. P. 31826–31834. https://doi.org/10.1074/jbc.M704894200
- Siddiqui T., Zia M.K., Ali S.S., Rehman A.A., Ahsan H., Khan F.H. // Arch. Physiol. Biochem. 2016. V. 122. P. 1–7. https://doi.org/10.3109/13813455.2015.1115525
- DiScipio R.G., Smith C.A., Muller-Eberhard H.J., Hugli T.E. // J. Biol. Chem. 1983. V. 258. P. 10629–10636. https://doi.org/10.1016/S0021-9258(17)44503-0
- Zharkova M.S., Komlev A.S., Filatenkova T.A., Sukhareva M.S., Vladimirova E.V., Trulioff A.S., Orlov D.S., Dmitriev A.V., Afinogenova A.G., Spiridonova A.A., Shamova O.V. // Pharmaceutics. 2023. V. 15. P. 291. https://doi.org/10.3390/pharmaceutics15010291
- Krenev I.A., Umnyakova E.S., Eliseev I.E., Dubrovskii Y.A., Gorbunov N.P., Pozolotin V.A., Komlev A.S., Panteleev P.V., Balandin S.V., Ovchinnikova T.V., Shamova O.V., Berlov M.N. // Mar. Drugs. 2020. V. 18. P. 631. https://doi.org/10.3390/md18120631
- Umnyakova E.S., Gorbunov N.P., Zhakhov A.V., Krenev I.A., Ovchinnikova T.V., Kokryakov V.N., Berlov M.N. // Mar. Drugs. 2018. V. 16. P. 480. https://doi.org/10.3390/md16120480
- Fearon D.T., Austen K.F. // Proc. Natl. Acad. Sci. USA. 1977. V. 74. P. 1683-1687. https://doi.org/10.1073/pnas.74.4.1683
- Fields G.B., Noble R.L. // Int. J. Pept. Protein Res. 1990. V. 35. P. 161–214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x
- Pozolotin V.A., Umnyakova E.S., Kopeykin P.M., Komlev A.S., Dubrovskii Y.A., Krenev I.A. Shamova O.V., Berlov M.N. // Russ. J. Bioorg. Chem. 2021. V. 47. P. 741–748.] https://doi.org/10.1134/S1068162021030158
- Smith B.J. // Methods Mol. Biol. 1984. V. 1. P. 63–73. https://doi.org/10.1385/0-89603-062-8:63
- Berlov M.N., Korableva E.S., Andreeva Y.V., Ovchinnikova T.V., Kokryakov V.N. // Biochemistry (Moscow). 2007. V. 72. P. 445–451. https://doi.org/10.1134/S0006297907040128
- Świerczyńska M., Słowiński D., Michalski R., Romański J., Podsiadły R. // Molecules. 2023. V. 28. Р. 6055. https://doi.org/10.3390/molecules28166055
- A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020. https://www.R-project.org/
- Wickham H. // ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 2016.
- Kassambara A. //ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.6.0, 2023. https://rpkgs.datanovia.com/ggpubr/
Supplementary files
