Analysis of the content of membrane lipids of bivalve mytilid mollusks and strongylocentrotid sea urchins with different life spans

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In order to understand whether the lipid composition of the plasma membrane is related to life expectancy, in this work we conducted a comparative study of the profiles of molecular species of four main classes of plasma membrane phospholipids (phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS) and phosphatidylinositols (PI)) for the long-lived mussel Crenomytilus grayanus and the long-lived sea urchin Mesocentrotus nudus and the short-lived mussel Mytilus trossulus and the sea urchin Strongylocentrotus intermedius. Molecular profiles of these membrane lipids were determined using high-performance liquid chromatography in combination with high-resolution mass spectrometry. In this work it was shown that the profile of PI molecular species is not related to the lifespan of mussels and hedgehogs, in contrast to the profile of PC, PE, and PS molecular species. Sea urchins M. nudus and mussel C. grayanus with a longer lifespan were characterized by an increased content of PC, PE and PS with odd numbered alkyl/acyl chains and molecular species with arachidonic acid (20:4n-6), a higher content of which can contribute to a better adaptation of the mussel of C. grayanus and the sea urchin M. nudus and thus contribute to a longer lifespan. The lipidomic approach to studying the gerontological problem using sea urchin and bivalves as an example has shown a clear relationship between the profile of molecular types of membrane lipids and lifespan. The exact mechanisms of this need to be clarified further.

全文:

受限制的访问

作者简介

A. Drozdov

Zhirmunskii National Science Center of Marine Biology, Far East Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anatoliyld@mail.ru
俄罗斯联邦, Vladivostok

T. Sikorskaya

Zhirmunskii National Science Center of Marine Biology, Far East Branch, Russian Academy of Sciences

Email: anatoliyld@mail.ru
俄罗斯联邦, Vladivostok

V. Grigorchuk

Zhirmunskii National Science Center of Marine Biology, Far East Branch, Russian Academy of Sciences

Email: anatoliyld@mail.ru
俄罗斯联邦, Vladivostok

参考

  1. Анисимов В.Н. // Молекулярные и физиологические механизмы старения. Санкт-Петербург: Наука, 2008. Т. 1. 481 с.
  2. Чаплинская Е.В., Бутвиловский В.Э. // Старение: теории и генетические аспекты: учеб.-метод. пособие. Минск: БГМУ, 2014. 74 с.
  3. Голубев А. Г. Естественная история продолжительности жизни и старения. СПб.: Эко-Вектор, 2022. 551 с.
  4. Москалёв А.А. // Старение и гены. М.: Наука, 2008. 372 с.
  5. Москалёв А.А. // Успехи геронтологии. 2009. Т. 22. № 1. С. 92–103.
  6. Хэйфлик Л. // Как и почему мы стареем? М.: Вече АСТ, 1999. 432 с.
  7. Хансон К. П. // Успехи геронтологии. 1999. № 3. С. 103–110.
  8. Фролькис В.В. // Старение и увеличение продолжительности жизни. Л.: Наука, 1988. 239 с.
  9. Фролькис В.В. // Физиол. журн. 1990. № 5. С. 3–11.
  10. Фролькис В.В., Мурадян Х.К. // Старение, эволюция и продление жизни. Киев: Наукова думка, 1992. 336 с.
  11. Дильман В.М. // Четыре модели медицины. Л.: Медицина, 1987. 288 с.
  12. Pamplona R., Portero-Otin M., Riba D. // J. Lipid. Res. 1998. V. 39. P. 1989–1994.
  13. Barja G. // Free Radic. Biol. Med. 2002. V. 33. P. 1167– 1172.
  14. Pamplona R., Barja G., Portero-Otin M. // Ann. N.Y. Acad. Sci. 2002. V. 959. P. 475–490.
  15. Agaba M.K., Tocher D.R., Zheng X., Dickson C.A., Dick J.R., Teale A.J. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005. V. 142. P. 342–352. https://doi.org/10.1016/j.cbpb.2005.08.005
  16. Hulbert A.J., Else P.L. // J. Theor. Biol. 1999. V. 199. P. 257–274.
  17. Hulbert A.J., Pamplona R., Buffenstein R., Buttemer W.A. // Physiol. Rev. 2007. V. 87. P. 1175–1213. https://doi.org/10.1152/physrev.00047.2006
  18. Munro D., Blier P.U. // Aging Cell. 2012. V. 11. P. 845– 855.
  19. Pamplona R., Prat J., Cadenas S., Rojas C., PérezCampo R., López Torres M., Barja G. // Mech. Ageing. Dev. 1996. V. 86. P. 53– 66. https://doi.org/10.1016/0047-6374(95)01673-2
  20. Bodnar A.G. // Exp. Gerontol. 2009. V. 44. P. 477–484.
  21. Schöne B.R., Oschmann W., Rössler J., Freyre Castro A.D., Houk S.D., Kröncke I., Dreyer W., Janssen R., Rumohr H., Dunca E. // Geology. 2003. V. 31. P. 1237–1240.
  22. Schöne B.R., Fiebig J., Pfeiffer M., Gleß R., Hickson J., Johnson A.L.A., Dreyer W., Oschmann W. // Palaeogeography, Palaeoclimatology, Palaeoecology. 2005. V. 228. P. 130–148.
  23. Butler P.G., Wanamaker A.D., Scourse J.D., Richardson Ch.A., Reynolds D.J. // Palaeogeography, Palaeoclimatology, Palaeoecology. 2013. V. 373. P. 141– 151.
  24. Золотарев В.Н. // Склерохронология морских двустворчатых моллюсков. Киев: Наукова думка, 1989. 112 с.
  25. Bodnar A.G., Coffman J.A. // Aging Cell. 2016. V. 15. P. 778–787.
  26. Ebert T.A. // Longevity, Life History, and Relative Body Wall Size in Sea Urchins // Ecol. Monogr. 1982. V. 52. P. 353–394.
  27. Ebert T.A., Southon J.R. // Fishery Bulletin. 2003. V. 101. P. 915–922.
  28. Ebert T.A. // Exp. Gerontol. 2008. V. 43. P. 734–738.
  29. Ebert T.A., Russell M.P. // Mar. Biol. 1993. V. 117. P. 79–89.
  30. Sergiev P.V., Artemov A.A., Egor B. Prokhortchouk E.B., Dontsova O.A., Berezkin G.V. // Aging. 2016. V. 8. P. 261–271.
  31. Vinnikova V.V., Drozdov A.L. // Biol. Bulletin. 2011. V. 38. P. 861–867. https://doi.org/10.1134/S1062359011090093
  32. Kober K.M., Bernardi G. // BMC Evol. Biol. 2013. V. 13. P. 1–4. http://www.biomedcentral.com/1471-2148/13/88
  33. Folch J., Lees M., Sloane-Stanley G.A. // J. Biol. Chem. 1957. V. 226. P. 497–509.
  34. Imbs A.B., Dang L.P.T., Rybin V.G., Svetashev V.I. // Lipids. 2015. V. 50. P. 575–589.
  35. Sikorskaya T.V., Ermolenko E.V., Efimova K.V. // Coral Reefs. 2022. V. 41. P. 277–291.
  36. Shikov A., Laakso I., Pozharitskaya O.N., Makarov V.G., Hiltunen R. // Planta Medica. 2012. V. 78. P. 1146–1164.
  37. Shikov A., Laakso I., Pozharitskaya O., Seppänen-Laakso T., Krishtopina A., Makarova M., Vuorela H., Makarov V. // Mar Drugs. 2017. V. 15. P. 365–376. https://doi.org/10.3390/md15120365
  38. Istomina A.A., Zhukovskaya A.F., Mazeika A.N., Barsova E.A., Chelomin V.P., Mazur M.A., Elovskaya O.A., Mazur A.A., Dovzhenko N.V., Fedorets Y.V., Karpenko A.A. // Biology (Basel). 2023. V. 12. P. 1–13. https://doi.org/10.3390/biology12060837
  39. Хавинсон В.Х., Линькова Н.С. // Физиология человека. 2012. Т. 38. С. 119–127.
  40. Скулачев В.П. // Экономич. стратегии. 2016. № 1. С. 36–39.
  41. Скулачев В.П., Скулачев М.В., Фенюк Б.А. // Жизнь без старости (электронное издание). М.: МГУ им. М.В. Ломоносова, 2014. 345 с.
  42. Kaneda T. // Microbiol. Rev. 1991. V. 55. P. 288–302.
  43. Welch D.F. // Clin. Microbiol. Rev. 1991. V. 4. P. 422–438.
  44. Haubert D., Haggblom M.M., Langel R., Scheu S., Ruess L. // Soil Biol. Biochem. 2006. V. 38. P. 2004–2007.
  45. Řezanka T., Sigler K. // Prog. Lipid Res. 2009. V. 48. P. 206 –238.
  46. Beasley D. // Am. J. Physiol. 1999. V. 276. P. 1369–1378.
  47. Maskrey B.H., Megson I.L., Whitfield P.D., Rossi A.G. // Arterioscler. Thromb. Vasc. Biol. 2011. V. 31. P. 1001– 1006.
  48. Rett B.S., Whelan J. // Nutr. Metab. (Lond.). 2011. V. 8. P. 36–51. https://doi.org/10.1186/1743-7075-8-36.
  49. Norambuena F., Morais S., Emery J.A., Turchini G.M. // PLoS One. 2015. V. 10. P. e0143622. https://doi.org/10.1371/journal.pone.0143622

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Profile of membrane lipid molecular species: phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS) and phosphatidylinositols (PI) with FA 20:1, 20:2, 20:3, 20:4, 20:5, 22:2, 22:3, 22:5, 22:6, 24:5 and with acyl/acyl chains with an odd number of carbon atoms (Och) – sea urchins Mesocentrotus nudus (MN) and Strongylocentrotus intermedius (SI) (a) and mussels Crenomytilus grayanus (CG) and Mytilus trossulus (MT) (b). The significance of differences (p value) is indicated by numbers above the square brackets.

下载 (234KB)

版权所有 © Russian Academy of Sciences, 2025