Platinum Polyoxoniobate: Stability, Cytotoxicity, and Cellular Uptake
- Autores: Yudkina A.V.1,2, Vokhtantsev I.P.1, Rychkov D.A.2,3, Volchek V.V.4, Abramov P.A.4, Sokolov M.N.4, Zharkov D.O.5
-
Afiliações:
- SB RAS Institute of Chemical Biology and Fundamental Medicine
- Synchrotron Radiation Facility – Siberian Circular Photon Source SKIF, SB RAS Boreskov Institute of Catalysis
- SB RAS Institute of Solid State Chemistry and Mechanochemistry
- SB RAS Nikolaev Institute of Inorganic Chemistry
- Novosibirsk State University
- Edição: Volume 51, Nº 2 (2025)
- Páginas: 362-371
- Seção: Articles
- URL: https://innoscience.ru/0132-3423/article/view/682753
- DOI: https://doi.org/10.31857/S0132342325020141
- EDN: https://elibrary.ru/LBFJNY
- ID: 682753
Citar
Resumo
Platinum polyoxometalates are Pt (IV) complexes containing bulky cluster ligands. We have shown previously that platinum polyoxoniobate [(Nb6O19)2{Pt(OH)2}2]12− (Pt-PON1) containing two Pt centers can covalently bind DNA. Here we have addressed the structural stability of Pt-PON1 and its conjugate with guanine at the N7 position, cytotoxicity of this compound, and its accumulation in living cells. Quantum mechanical modeling showed that the Pt-PON1 complex is unstable outside the crystal lattice, while its conjugate with guanine likely undergoes structural rearrangement quite easily. A decrease in the survival of Escherichia coli XL1-Blue and DH5α strains and human HEK293T and MCF-7 cell lines was observed already at 20 μM Pt-PON1 but at higher concentrations the compound was poorly soluble in biologically compatible media. Atomic emission spectroscopy for Pt and Nb showed that Pt-PON1 is efficiently taken up by human cells in a stoichiometry corresponding to the original complex. Thus, platinum polyoxometalates, provided their solubility can be improved, may be considered as promising antitumor agents.
Palavras-chave
Texto integral

Sobre autores
A. Yudkina
SB RAS Institute of Chemical Biology and Fundamental Medicine; Synchrotron Radiation Facility – Siberian Circular Photon Source SKIF, SB RAS Boreskov Institute of Catalysis
Autor responsável pela correspondência
Email: ayudkina@niboch.nsc.ru
Rússia, prosp. Lavrentieva 8, Novosibirsk 630090; Nikolskiy prosp. 1, Kol’tsovo, Novosibirsk Region 630559
I. Vokhtantsev
SB RAS Institute of Chemical Biology and Fundamental Medicine
Email: ayudkina@niboch.nsc.ru
Rússia, prosp. Lavrentieva 8, Novosibirsk 630090
D. Rychkov
Synchrotron Radiation Facility – Siberian Circular Photon Source SKIF, SB RAS Boreskov Institute of Catalysis; SB RAS Institute of Solid State Chemistry and Mechanochemistry
Email: ayudkina@niboch.nsc.ru
Rússia, Nikolskiy prosp. 1, Kol’tsovo, Novosibirsk Region 630559; ul. Kutateladze 18, Novosibirsk 630128
V. Volchek
SB RAS Nikolaev Institute of Inorganic Chemistry
Email: ayudkina@niboch.nsc.ru
Rússia, prosp. Lavrentieva 3, Novosibirsk 630090
P. Abramov
SB RAS Nikolaev Institute of Inorganic Chemistry
Email: ayudkina@niboch.nsc.ru
Rússia, prosp. Lavrentieva 3, Novosibirsk 630090
M. Sokolov
SB RAS Nikolaev Institute of Inorganic Chemistry
Email: ayudkina@niboch.nsc.ru
Rússia, prosp. Lavrentieva 3, Novosibirsk 630090
D. Zharkov
Novosibirsk State University
Email: ayudkina@niboch.nsc.ru
Rússia, ul. Pirogova 2, Novosibirsk 630090
Bibliografia
- Kelland L. // Nat. Rev. Cancer. 2007. V. 7. P. 573–584. https://doi.org/10.1038/nrc2167
- Dasari S., Tchounwou P.B. // Eur. J. Pharmacol. 2014. V. 740. P. 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
- Wheate N.J., Walker S., Craig G.E., Oun R. // Dalton Trans. 2010. V. 39. P. 8113–8127. https://doi.org/10.1039/c0dt00292e
- Apps M.G., Choi E.H.Y., Wheate N.J. // Endocr. Relat. Cancer. 2015. V. 22. P. R219–R233. https://doi.org/10.1530/ERC-15-0237
- Hu X., Li F., Noor N., Ling D. // Sci. Bull. 2017. V. 62. P. 589–596. https://doi.org/10.1016/j.scib.2017.03.008
- Li X., Liu Y., Tian H. // Bioinorg. Chem. Appl. 2018. V. 2018. P. 8276139. https://doi.org/10.1155/2018/8276139
- Gibson D. // J. Inorg. Biochem. 2021. V. 217. P. 111353. https://doi.org/10.1016/j.jinorgbio.2020.111353
- Marotta C., Giorgi E., Binacchi F., Cirri D., Gabbiani C., Pratesi A. // Inorg. Chim. Acta. 2023. V. 548. P. 121388. https://doi.org/10.1016/j.ica.2023.121388
- Aher S., Zhu J., Bhagat P., Borse L., Liu X. // Top. Curr. Chem. 2024. V. 382. P. 6. https://doi.org/10.1007/s41061-023-00448-3
- Rhule J.T., Hill C.L., Judd D.A., Schinazi R.F. // Chem. Rev. 1998. V. 98. P. 327–358. https://doi.org/10.1021/cr960396q
- Hasenknopf B. // Front. Biosci. 2005. V. 10. P. 275–287. https://doi.org/10.2741/1527
- Van Rompuy L.S., Parac-Vogt T.N. // Curr. Opin. Biotechnol. 2019. V. 58. P. 92–99. https://doi.org/10.1016/j.copbio.2018.11.013
- Shigeta S., Mori S., Yamase T., Yamamoto N., Yamamoto N. // Biomed. Pharmacother. 2006. V. 60. P. 211–219. https://doi.org/10.1016/j.biopha.2006.03.009
- Wang S., Sun W., Hu Q., Yan H., Zeng Y. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 2357–2359. https://doi.org/10.1016/j.bmcl.2017.04.025
- Bijelic A., Aureliano M., Rompel A. // Chem. Commun. 2018. V. 54. P. 1153–1169. https://doi.org/10.1039/c7cc07549a
- Gumerova N., Krivosudský L., Fraqueza G., Breibeck J., Al-Sayed E., Tanuhadi E., Bijelic A., Fuentes J., Aureliano M., Rompel A. // Metallomics. 2018. V. 10. P. 287–295. https://doi.org/10.1039/c7mt00279c
- Yanagie H., Ogata A., Mitsui S., Hisa T., Yamase T., Eriguchi M. // Biomed. Pharmacother. 2006. V. 60. P. 349–352. https://doi.org/10.1016/j.biopha.2006.06.018
- Bijelic A., Aureliano M., Rompel A. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2980–2999. https://doi.org/10.1002/anie.201803868
- Zhao M., Chen X., Chi G., Shuai D., Wang L., Chen B., Li J. // Inorg. Chem. Front. 2020. V. 7. P. 4320–4332. https://doi.org/10.1039/D0QI00860E
- Gao N., Sun H., Dong K., Ren J., Duan T., Xu C., Qu X. // Nat. Commun. 2014. V. 5. P. 3422. https://doi.org/10.1038/ncomms4422
- Yang H.-K., Cheng Y.-X., Su M.-M., Xiao Y., Hu M.-B., Wang W., Wang Q. // Bioorg. Med. Chem. Lett. 2013. V. 23. P. 1462–1466. https://doi.org/10.1016/j.bmcl.2012.12.081
- Fu L., Gao H., Yan M., Li S., Li X., Dai Z., Liu S. // Small. 2015. V. 11. P. 2938–2945. https://doi.org/10.1002/smll.201500232
- Sun T., Cui W., Yan M., Qin G., Guo W., Gu H., Liu S., Wu Q. // Adv. Mater. 2016. V. 28. P. 7397–7404. https://doi.org/10.1002/adma.201601778
- Abramov P.A., Vicent C., Kompankov N.B., Gushchin A.L., Sokolov M.N. // Chem. Commun. 2015. V. 51. P. 4021–4023. https://doi.org/10.1039/C5CC00315F
- Yudkina A.V., Sokolov M.N., Abramov P.A., Grin I.R., Zharkov D.O. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 641–646. https://doi.org/10.1134/S1068162019060414
- Wang D., Lippard S.J. // Nat. Rev. Drug Discov. 2005. V. 4. P. 307–320. https://doi.org/10.1038/nrd1691
- Stewart J.J.P. // MOPAC2016. Colorado Springs: Stewart Computational Chemistry, 2016.
- Mardirossian N., Head-Gordon M. // Mol. Phys. 2017. V. 115. P. 2315–2372. https://doi.org/10.1080/00268976.2017.1333644
- Nichols R.J., Sen S., Choo Y.J., Beltrao P., Zietek M., Chaba R., Lee S., Kazmierczak K. M., Lee K.J., Wong A., Shales M., Lovett S., Winkler M.E., Krogan N.J., Typas A., Gross C.A. // Cell. 2011. V. 144. P. 143–156. https://doi.org/10.1016/j.cell.2010.11.052
- Garnett M.J., Edelman E.J., Heidorn S.J., Greenman C.D., Dastur A., Lau K.W., Greninger P., Thompson I.R., Luo X., Soares J., Liu Q., Iorio F., Surdez D., Chen L., Milano R.J., Bignell G.R., Tam A.T., Davies H., Stevenson J.A., Barthorpe S., Lutz S.R., Kogera F., Lawrence K., McLaren-Douglas A., Mitropoulos X., Mironenko T., Thi H., Richardson L., Zhou W., Jewitt F., Zhang T., O’Brien P., Boisvert J.L., Price S., Hur W., Yang W., Deng X., Butler A., Choi H.G., Chang J.W., Baselga J., Stamenkovic I., Engelman J.A., Sharma S.V., Delattre O., Saez-Rodriguez J., Gray N.S., Settleman J., Futreal P.A., Haber D.A., Stratton M.R., Ramaswamy S., McDermott U., Benes C.H. // Nature. 2012. V. 483. P. 570–575. https://doi.org/10.1038/nature11005
- Tusskorn O., Khunluck T., Prawan A., Senggunprai L., Kukongviriyapan V. // Biomed. Pharmacother. 2019. V. 111. P. 109–118. https://doi.org/10.1016/j.biopha.2018.12.051
- Santini M.T., Paradisi S., Straface E., Malorni W. // Cell Biol. Toxicol. 1993. V. 9. P. 295–306. https://doi.org/10.1007/BF00755607
- Kobayashi D., Kakinouchi K., Nagae T., Nagai T., Shimura K., Hazama A. // FEBS Lett. 2017. V. 591. P. 718–727. https://doi.org/10.1002/1873-3468.12579
- Welters M.J.P., Fichtinger-Schepman A.M.J., Baan R.A., Hermsen M.A.J.A., van der Vijgh W.J.F., Cloos J., Braakhuis B.J.M. // Int. J. Cancer. 1997. V. 71. P. 410–415. https://doi.org/10.1002/(SICI)1097-0215(19970502) 71:3<410::AID-IJC18>3.0.CO;2-J
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 09, Revision D.01. Wallingford: Gaussian, Inc., 2016.
- Momma K., Izumi F. // J. Appl. Crystallogr. 2008. V. 41. P. 653–658. https://doi.org/10.1107/S0021889808012016
- van Meerloo J., Kaspers G.J.L., Cloos J. // Methods Mol. Biol. 2011. V. 731. P. 237–245. https://doi.org/10.1007/978-1-61779-080-5_20
- Gumerova N.I., Rompel A. // Nat. Rev. Chem. 2018. V. 2. P. 0112. https://doi.org/10.1038/s41570-018-0112
- Compain J.-D., Mialane P., Marrot J., Sécheresse F., Zhu W., Oldfield E., Dolbecq A. // Chemistry. 2010. V. 16. P. 13741–13748. https://doi.org/10.1002/chem.201001626
Arquivos suplementares
