Magnetic nanoparticles Fe3O4 modified with sodium dodecyl sulphate for removing methylene blue from water

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We show that surface-modified magnetic iron oxide nanoparticles with an average size of about 10 nm have a high adsorption capacity for sorption of pollutants from wastewater. A significant advantage of using magnetic materials is the ability to extract the sorbent using an external magnetic field, which makes the purification process more efficient. We found that the anionic substance sodium dodecyl sulfate increases the electrostatic attraction to the cationic compound methylene blue, and also prevents the aggregation of nanoparticles, thus increasing the active surface. The sorption capacity of magnetic nanoparticles after surface functionalization increased by a factor of 250 compared to unmodified iron oxide nanoparticles. The mechanism and kinetic parameters of the sorption process were determined, as well as the optimal conditions for increasing the efficiency of the sorption process.

Sobre autores

K. Magomedov

Immanuel Kant Baltic Federal University; Dagestan State University

Autor responsável pela correspondência
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad; Russia, 367008, Makhachkala

A. Omelyanchik

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

S. Vorontsov

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

E. Čižmár

Institute of Physics, Faculty of Science, P.J. Šafárik University

Email: m_kurban@mail.ru
Slovakia, 041 80, Košice

V. Rodionova

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

E. Levada

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

Bibliografia

  1. Islam M.A., Ali I., Karim S.M.A. et al. // J. Water Process Eng. 2019. V. 32. Art. No. 100911.
  2. Nidheesh P.V., Zhou M., Oturan M.A. // Chemosphere. 2018. V. 197. P. 210.
  3. Dutta S., Gupt, B., Srivastava S.K., Gupt A.K. // Mater. Advances. 2021. V. 2. No. 14. P. 4497.
  4. Piaskowski K., Świderska-Dąbrowska R., Zarzyck P.K. // J. AOAC Int. 2018. V. 101. No. 5. P. 1371.
  5. Ren L., Zhao G., Pan L. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. No. 16. P. 19176.
  6. Bal G., Thakur A. // Materials Today. 2022. V. 50. Part 5. P. 1575.
  7. Bilal M., Ihsanullah I., Hassan Shah M.U. et al. // J. Environ. Manage. 2022. V. 321. Art. No. 115981.
  8. Orudzhev F., Ramazanov S., Sobola D. et al. // Nano Energy. 2021. V. 90. Art. No. 106586.
  9. Orudzhev F., Ramazanov S., Sobola D. et al. // Nanomaterials. 2020. V. 10. № 11. Art. No. 2183.
  10. Juang R.S., Wu F.C., Tseng R.L. // Colloids Surf. A. 2002. V. 201. No. 1–3. P. 191.
  11. Hussain Z., Chang N., Sun J. et al. // J. Hazard. Mater. 2021. V. 422. Art. No. 126778.
  12. Alam M.Z., Bari M.N., Kawsari S. // Environ. Sustain. Ind. 2022. V. 14. Art. No. 100176.
  13. Verma R., Asthana A., Singh A.K. et al. // Microchemical J. 2017. V. 130. P. 168.
  14. Campos A.F.C., Reis P.F., Neiva J.V.C.M. et al. // Mater. Res. 2021. V. 25. No. 4. Art. No. e20210217.
  15. de Oliveira H.A.L., Campos A.F.C., Gomide G. et al. // Colloids Surf. A. 2020. V. 600. Art. No. 125002.
  16. Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
  17. Talbot D., Queiros Campos J., Checa-Fernandez B.L. et al. // ACS Omega. 2021. V. 6. No. 29. P. 19086.
  18. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2015. V. 5. Art. No. 9028.
  19. Lu H., Zhang L., Wang B. et al. // Cellulose. 2019. V. 26. No. 8. P. 4909.
  20. Ali I. // Chem. Rev. 2012. V. 112. No. 10. P. 5073.
  21. Simonsen G., Strand M., Øye G. // J. Petrol. Sci. Eng. 2018. V. 165. P. 488.
  22. Yin F., Yu J., Gupta S. et al. // Fuel Proc. Technol. 2014. V. 117. P. 17.
  23. Salvador M., Moyano A., Martínez-García J.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 12. P. 4839.
  24. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. No. 1. Art. No. 2.
  25. Silva F.G. da, Depeyrot J., Campos A.F.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 8. P. 4888.
  26. Massart R. // IEEE Trans. Magn. 1981. V. 17. No. 2. P. 1247.
  27. Omelyanchik A., da Silva F.G., Gomide G. et al. // J. Alloys Compounds. 2021. V. 883. Art. No. 160779.
  28. Omelyanchik A., Kamzin A.S., Valiullin A.A. et al. // Colloids Surf. A. 2022. V. 647. Art. No. 129090.
  29. Lu A.H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  30. Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
  31. Tombácz E., Bica D., Hajdú A. et al. // J. Phys. Cond. Matt. 2008. V. 20. Art. No. 204103.
  32. Abdolrahimi M., Vasilakaki M., Slimani S. et al. // Nanomaterials. 2021. V. 11. No. 7. Art. No. 1787.
  33. Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
  34. Feitoza N.C., Gonçalves T.D., Mesquita J.J. et al. // J. Hazard. Mater. 2014. V. 264. No. 1. P. 153.
  35. Rcuciu M., Creang D.E., Airinei A. // Eur. Phys. J. E. 2006. V. 21. No. 2. P. 117.
  36. Li L., Mak K.Y., Leung C.W. et al. // Microelectron. Eng. 2013. V. 110. No. 10. P. 329.
  37. Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
  38. Sandler S.E., Fellows B.D., Mefford O.T. // Analyt. Chem. 2019. V. 91. No. 22. P. 14159.
  39. Sharifi Dehsari H., Ksenofontov V., Möller A. et al. // J. Phys. Chem. C. 2018. V. 122. No. 49. P. 28292.
  40. Pacakova B., Kubickova S., Reznickova A. et al. Spinel ferrite nanoparticles: correlation of structure and magnetism. In: Magnetic spinels. Synthesis, properties and applications. InTech, 2017.
  41. Frison R., Cernuto G., Cervellino A. et al. // Chem. Mater. 2013. V. 25. No. 23. P. 4820.
  42. Bruvera I.J., Mendoza Zélis P., Pilar Calatayud M. et al. // J. Appl. Phys. 2015. V. 118. No. 18. Art. No. 184304.
  43. Muscas G., Jovanovi S., Vukomanovi M. et al. // J. Alloys Compounds. 2019. V. 796. No. 5. P. 203.
  44. Morrish A.H. The physical principles of magnetism. Piscataway: IEEE Press, 1965. 700 p.
  45. Batlle X., Pérez N., Guardia P. et al. // J. Appl. Phys. 2011. V. 109. No. 7. P. 1.
  46. Petrinic I., Stergar J., Bukšek H. et al. // Nanomaterials. 2021. V. 11. Art. No. 2965.
  47. Zhao X., Shi Y., Wang T. et al. // J. Chromatogr. A. 2008. V. 1188. No. 2. P. 140.
  48. Reddy D.H.K., Yun Y.S. // Coord. Chem. Rev. 2016. V. 315. P. 90.
  49. Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. P. 451.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (242KB)
4.

Baixar (113KB)
5.

Baixar (128KB)
6.

Baixar (645KB)

Declaração de direitos autorais © К.Э. Магомедов, А.С. Омельянчик, С.А. Воронцов, Э. Чижмар, В.В. Родионова, Е.В. Левада, 2023