Magnetic nanoparticles Fe3O4 modified with sodium dodecyl sulphate for removing methylene blue from water
- Autores: Magomedov K.E.1,2, Omelyanchik A.S.1, Vorontsov S.A.1, Čižmár E.3, Rodionova V.V.1, Levada E.V.1
-
Afiliações:
- Immanuel Kant Baltic Federal University
- Dagestan State University
- Institute of Physics, Faculty of Science, P.J. Šafárik University
- Edição: Volume 87, Nº 6 (2023)
- Páginas: 819-827
- Seção: Articles
- URL: https://innoscience.ru/0367-6765/article/view/654379
- DOI: https://doi.org/10.31857/S0367676523701429
- EDN: https://elibrary.ru/VLIVDS
- ID: 654379
Citar
Resumo
We show that surface-modified magnetic iron oxide nanoparticles with an average size of about 10 nm have a high adsorption capacity for sorption of pollutants from wastewater. A significant advantage of using magnetic materials is the ability to extract the sorbent using an external magnetic field, which makes the purification process more efficient. We found that the anionic substance sodium dodecyl sulfate increases the electrostatic attraction to the cationic compound methylene blue, and also prevents the aggregation of nanoparticles, thus increasing the active surface. The sorption capacity of magnetic nanoparticles after surface functionalization increased by a factor of 250 compared to unmodified iron oxide nanoparticles. The mechanism and kinetic parameters of the sorption process were determined, as well as the optimal conditions for increasing the efficiency of the sorption process.
Sobre autores
K. Magomedov
Immanuel Kant Baltic Federal University; Dagestan State University
Autor responsável pela correspondência
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad; Russia, 367008, Makhachkala
A. Omelyanchik
Immanuel Kant Baltic Federal University
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad
S. Vorontsov
Immanuel Kant Baltic Federal University
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad
E. Čižmár
Institute of Physics, Faculty of Science, P.J. Šafárik University
Email: m_kurban@mail.ru
Slovakia, 041 80, Košice
V. Rodionova
Immanuel Kant Baltic Federal University
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad
E. Levada
Immanuel Kant Baltic Federal University
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad
Bibliografia
- Islam M.A., Ali I., Karim S.M.A. et al. // J. Water Process Eng. 2019. V. 32. Art. No. 100911.
- Nidheesh P.V., Zhou M., Oturan M.A. // Chemosphere. 2018. V. 197. P. 210.
- Dutta S., Gupt, B., Srivastava S.K., Gupt A.K. // Mater. Advances. 2021. V. 2. No. 14. P. 4497.
- Piaskowski K., Świderska-Dąbrowska R., Zarzyck P.K. // J. AOAC Int. 2018. V. 101. No. 5. P. 1371.
- Ren L., Zhao G., Pan L. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. No. 16. P. 19176.
- Bal G., Thakur A. // Materials Today. 2022. V. 50. Part 5. P. 1575.
- Bilal M., Ihsanullah I., Hassan Shah M.U. et al. // J. Environ. Manage. 2022. V. 321. Art. No. 115981.
- Orudzhev F., Ramazanov S., Sobola D. et al. // Nano Energy. 2021. V. 90. Art. No. 106586.
- Orudzhev F., Ramazanov S., Sobola D. et al. // Nanomaterials. 2020. V. 10. № 11. Art. No. 2183.
- Juang R.S., Wu F.C., Tseng R.L. // Colloids Surf. A. 2002. V. 201. No. 1–3. P. 191.
- Hussain Z., Chang N., Sun J. et al. // J. Hazard. Mater. 2021. V. 422. Art. No. 126778.
- Alam M.Z., Bari M.N., Kawsari S. // Environ. Sustain. Ind. 2022. V. 14. Art. No. 100176.
- Verma R., Asthana A., Singh A.K. et al. // Microchemical J. 2017. V. 130. P. 168.
- Campos A.F.C., Reis P.F., Neiva J.V.C.M. et al. // Mater. Res. 2021. V. 25. No. 4. Art. No. e20210217.
- de Oliveira H.A.L., Campos A.F.C., Gomide G. et al. // Colloids Surf. A. 2020. V. 600. Art. No. 125002.
- Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
- Talbot D., Queiros Campos J., Checa-Fernandez B.L. et al. // ACS Omega. 2021. V. 6. No. 29. P. 19086.
- Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2015. V. 5. Art. No. 9028.
- Lu H., Zhang L., Wang B. et al. // Cellulose. 2019. V. 26. No. 8. P. 4909.
- Ali I. // Chem. Rev. 2012. V. 112. No. 10. P. 5073.
- Simonsen G., Strand M., Øye G. // J. Petrol. Sci. Eng. 2018. V. 165. P. 488.
- Yin F., Yu J., Gupta S. et al. // Fuel Proc. Technol. 2014. V. 117. P. 17.
- Salvador M., Moyano A., Martínez-García J.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 12. P. 4839.
- Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. No. 1. Art. No. 2.
- Silva F.G. da, Depeyrot J., Campos A.F.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 8. P. 4888.
- Massart R. // IEEE Trans. Magn. 1981. V. 17. No. 2. P. 1247.
- Omelyanchik A., da Silva F.G., Gomide G. et al. // J. Alloys Compounds. 2021. V. 883. Art. No. 160779.
- Omelyanchik A., Kamzin A.S., Valiullin A.A. et al. // Colloids Surf. A. 2022. V. 647. Art. No. 129090.
- Lu A.H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
- Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
- Tombácz E., Bica D., Hajdú A. et al. // J. Phys. Cond. Matt. 2008. V. 20. Art. No. 204103.
- Abdolrahimi M., Vasilakaki M., Slimani S. et al. // Nanomaterials. 2021. V. 11. No. 7. Art. No. 1787.
- Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
- Feitoza N.C., Gonçalves T.D., Mesquita J.J. et al. // J. Hazard. Mater. 2014. V. 264. No. 1. P. 153.
- Rcuciu M., Creang D.E., Airinei A. // Eur. Phys. J. E. 2006. V. 21. No. 2. P. 117.
- Li L., Mak K.Y., Leung C.W. et al. // Microelectron. Eng. 2013. V. 110. No. 10. P. 329.
- Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
- Sandler S.E., Fellows B.D., Mefford O.T. // Analyt. Chem. 2019. V. 91. No. 22. P. 14159.
- Sharifi Dehsari H., Ksenofontov V., Möller A. et al. // J. Phys. Chem. C. 2018. V. 122. No. 49. P. 28292.
- Pacakova B., Kubickova S., Reznickova A. et al. Spinel ferrite nanoparticles: correlation of structure and magnetism. In: Magnetic spinels. Synthesis, properties and applications. InTech, 2017.
- Frison R., Cernuto G., Cervellino A. et al. // Chem. Mater. 2013. V. 25. No. 23. P. 4820.
- Bruvera I.J., Mendoza Zélis P., Pilar Calatayud M. et al. // J. Appl. Phys. 2015. V. 118. No. 18. Art. No. 184304.
- Muscas G., Jovanovi S., Vukomanovi M. et al. // J. Alloys Compounds. 2019. V. 796. No. 5. P. 203.
- Morrish A.H. The physical principles of magnetism. Piscataway: IEEE Press, 1965. 700 p.
- Batlle X., Pérez N., Guardia P. et al. // J. Appl. Phys. 2011. V. 109. No. 7. P. 1.
- Petrinic I., Stergar J., Bukšek H. et al. // Nanomaterials. 2021. V. 11. Art. No. 2965.
- Zhao X., Shi Y., Wang T. et al. // J. Chromatogr. A. 2008. V. 1188. No. 2. P. 140.
- Reddy D.H.K., Yun Y.S. // Coord. Chem. Rev. 2016. V. 315. P. 90.
- Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. P. 451.
Arquivos suplementares
