Second-order optical differentiator based on a composite metal–dielectric–metal structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Optical properties of a composite structure consisting of two sequentially arranged three-layer metal-dielectric-metal structures (MDM-structures) are considered. It is shown that such a composite MDM-structure can perform second-order spatiotemporal differentiation with high quality at normal incidence. The obtained results can find application in creating systems for analog optical computing and optical information processing.

Sobre autores

A. Kashapov

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Autor responsável pela correspondência
Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

E. Bezus

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

D. Bykov

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

L. Doskolovich

Image Processing Systems Institute of RAS – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences; Samara National Research University

Email: ar.kashapov@outllok.com
Russia, 443001, Samara; Russia, 443086, Samara

Bibliografia

  1. Silva A., Monticone F., Castaldi G. et al. // Science. 2014. V. 343. P. 161.
  2. Zhou Y., Zheng H., Kravchenko I.I., Valentine J. // Nature Photon. 2020. V. 14. P. 316.
  3. Bykov D.A., Doskolovich L.L., Soifer V.A. // Opt. Lett. 2011. V. 36. P. 3509.
  4. Doskolovich L.L., Bykov D.A., Bezus E.A., Soifer V.A. // Opt. Lett. 2014. V. 39. P. 1278.
  5. Golovastikov N.V., Doskolovich L.L., Bezus E.A. et al. // J. Exp. Theor. Phys. 2018. V. 127. P. 202.
  6. Karimi A., Zarifkar A., Miri M. // J. Opt. Soc. Amer. B. 2019. V. 36. P. 1738.
  7. Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // J. Optics. 2021. V. 23. No. 2. Art. No. 023501.
  8. Zhang J., Ying Q., Ruan Z. // Opt. Lett. 2019. V. 44. P. 4511.
  9. Golovastikov N.V., Bykov D.A., Doskolovich L.L. // Opt. Lett. 2015. V. 40. P. 3492.
  10. https://refractiveindex.info.
  11. Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. No. 12. P. 4370.
  12. Moharam M.G., Pommet D.A., Grann E.B. Gaylord T.K. // J. Opt. Soc. Amer. A. 1995. V. 12. P. 1077.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (250KB)
3.

Baixar (879KB)
4.

Baixar (932KB)

Declaração de direitos autorais © А.И. Кашапов, Е.А. Безус, Д.А. Быков, Л.Л. Досколович, 2023