Motion of a thin layer of magnetic fluid near a magnetizing body in a homogeneous magnetic field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The flow of a thin layer of a magnetic fluid along a horizontal plane near an fixed magnetizable cylindrical body in an applied uniform vertical magnetic field were investigated theoretically and experimentally. The shapes of the surface of the magnetic fluid at different times were plotted. The influence of the applied field on the flow of the layer was studied.

Texto integral

Acesso é fechado

Sobre autores

O. Sharova

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: olgasharova96@mail.ru
Rússia, Moscow

D. Pelevina

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Rússia, Moscow

V. Naletova

Lomonosov Moscow State University

Email: olgasharova96@mail.ru
Rússia, Moscow

Bibliografia

  1. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  2. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962; Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  3. Nguyen N.T. // Microfluid. Nanofluid. 2012. V. 12. P. 1.
  4. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  5. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  6. Jiahao Dong, Decai Li, Zhenkun Li // JMMM. 2022. V. 557. Art. No. 169453.
  7. Shmyrov A., Mizev A., Shmyrova A., Mizeva I. // Phys. Fluids. 2019. V. 31. Art. No. 12101.
  8. Калмыков С.А., Налетова В.А., Пелевина Д.А., Турков В.А. // Изв. РАН. МЖГ. 2013. № 5. С. 3; Kalmykov S.A., Naletova V.A., Pelevina D.A., Turkov V.A. // Fluid Dynamics. 2013. V. 48. No. 5. P. 567.
  9. Needham D.J., Merkin J.H. // J. Fluid Mech. 1987. V. 184. P. 357.
  10. Naletova V.A., Kim L.G., Turkov V.A. // JMMM. 1995. V. 149. P. 162.
  11. Naletova V.A., Turkov V.A. // JMMM. 1999. V. 201. P. 346.
  12. Тятюшкин А.Н. // Изв. РАН. МЖГ. 2019. № 4. С. 27; Tyatyushkin A.N. // Fluid Dynamics. 2019. V. 54. No. 4. P. 466.
  13. Коровин В.М., Райхер Ю.Л. // Магнитная гидродинамика. 1987. № 1. С. 49.
  14. Zhu S., Bian Yu., Wu T. et al. // Nano Lett. 2020. V. 20. No. 7. P. 5513.
  15. Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. No. 8. Art. No. 087107.
  16. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1992.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Flow of magnetic fluid near a cylindrical body, side view: diagram (a); photographs of the experiment (b) at different moments of time t at H∞ = 450 Oe, l = 1.4 cm. 1 — magnetizing body, 2 — layer of magnetic fluid, 3 — hole for draining liquid.

Baixar (125KB)
3. Fig. 2. Forms of the MF layer at different moments of time t at H∞ = 400 Oe: experiment l = 4.54 cm (a); calculation for experimental parameters (b).

Baixar (166KB)
4. Fig. 3. Dependence of the depth in layer h on time t in section x=0.6 cm for fields 1 — H∞ = 200 Oe, 2 — H∞ = 300 Oe, 3 — H∞ = 400 Oe: experiment (a) and calculation (b).

Baixar (79KB)
5. Fig. 4. Dependence of the function F on x at H∞ = 400 Oe (a) for different values ​​of zb: 1 — zb = 0.5 cm, 2 — zb = 0.6 cm; magnetic field isolines (b): in region I the field is greater than the applied one: H > H∞, and in region II the field is less than the applied one: H < H∞; 1 — H = 1.22∙H∞, 2 — H = 1.11∙H∞, 3 — H = 1.07∙H∞, 4 — H = H∞, 5 — H = 0.96∙H∞, 6 — H = 0.92∙H∞, 7 — H = 0.84∙H∞, 8 — z = h0.

Baixar (102KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024