Structural features and the effect of temperature memory in a vitrivied film of a europium(III) beta-diketonate complex

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Confocal optical microscopy data with a resolution of 1 μm on the spatial heterogeneity of a vitrified film prepared from a melt powder of an anisometric europium(III) beta-diketonate complex are presented. It has been shown that the heterogeneity caused by crystalline inclusions in the amorphous structure of the film, leads to a temperature memory effect, when the film can be in different states at the same temperature.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Lapaev

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

Хат алмасуға жауапты Автор.
Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

Ресей, Kazan

V. Nikiforov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

Ресей, Kazan

D. Zharkov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

Ресей, Kazan

A. Knyazev

Kazan National Research Technological University

Email: d_lapaev@mail.ru
Ресей, Kazan

Yu. Galyametdinov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences»; Kazan National Research Technological University

Email: d_lapaev@mail.ru

Zavoisky Physical-Technical Institute

Ресей, Kazan; Kazan

Әдебиет тізімі

  1. Weissman S.I. // J. Chem. Phys. 1942. V. 10. P. 214.
  2. Binnemans K. Handbook on the physics and chemistry of rare earths. V. 35. Amsterdam: Elsevier, 2005. P. 107.
  3. Brito H.F., Malta O.L., Felinto M.C.F.C., Teotonio E.E.S. The chemistry of metal enolates. V. 1. Chap. 3. John Wiley & Sons Ltd., 2009. P. 131.
  4. Hasegawa Y., Kitagawa Y. // J. Mater. Chem. C. 2019. V. 7. P. 7494.
  5. Li R., Xu F.-F., Gong Z.-L., Zhong Y.-W. // Inorg. Chem. Front. 2020. V. 7. P. 3258.
  6. Bussche F.V., Kaczmarek A.M., Speybroeck V.V. et al. // Chem. Eur. J. 2021. V. 27. P. 7214.
  7. Binnemans K. // Chem. Rev. 2009. V. 109. P. 4283.
  8. Quaranta M., Borisov S.M., Klimant I. // Bioanalyt. Rev. 2012. V. 4. P. 115.
  9. Borisov S.M., Fisher R., Saf R., Klimant I. // Adv. Funct. Mater. 2014. V. 24. P. 6548.
  10. Liu H., Lee Y., Park S. et al. // J. Luminescence. 2004. V. 110. P. 11.
  11. Wang Y., Qin W., Zhang J. et al. // Solid State Commun. 2007. V. 142. P. 689.
  12. Kai J., Felinto M.C.F.C., Nunes L.A.O. et al. // J. Mater. Chem. 2011. V. 21. P. 3796.
  13. Ilmi R., Anjum S., Haque A., Khan M.S. // J. Photochem. Photobiol. A. 2019. V. 383. P. 111968.
  14. Mironov L.Y., Evstropiev S.K. // Opt. Engin. 2019. V. 58. P. 027113.
  15. Emelina T., Zadoroznaya A., Kalinovskaya I., Mirochnik A. // Spectrochim. Acta A. 2020. V. 225. P. 117481.
  16. Kataoka H., Kitano T., Takizawa T. et al. // J. Alloys Compounds. 2014. V. 601. P. 293.
  17. Ondrus V., Meier R.J., Klein C. et al. // Sens. Actuators A. 2015. V. 233. P. 434.
  18. Dar W.A., Ganaie A.B., Iftikhar K. // J. Luminescence. 2018. V. 202. P. 438.
  19. Francisco L.H.C., Felinto M.C.F.C., Brito H.F. et al. // J. Mater Sci. Mater Electron. 2019. V. 30. P. 16922.
  20. Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // Opt. Mater. 2014. V. 37. P. 593.
  21. Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // J. Luminescence. 2016. V. 175. P. 106.
  22. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Opt. Mater. 2018. V. 75. P. 787.
  23. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Mater. Chem. C. 2018. V. 6. P. 9475.
  24. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Опт. и спектроск. 2019. Т. 126. № 1. С. 42, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Opt. Spectrosc. 2019. V. 126. No. 1. P. 34.
  25. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 12. С. 1635, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 12. P. 1475.
  26. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Mater. Chem. C. 2020. V. 6. P. 6273.
  27. Galyametdinov Yu.G., Knyazev A.A., Dzhabarov V.I. et al. // Adv. Mater. 2008. V. 20. P. 252.
  28. Knyazev A.A., Krupin A.S., Molostova E.Yu. et al. // Inorg. Chem. 2015. V. 54. P. 8987.
  29. Knyazev A.A., Karyakin M.E., Romanova K.A. et al. // Eur. J. Inorg. Chem. 2017. P. 639.
  30. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2019. V. 382. P. 111962.
  31. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2022. V. 427. P. 113821.
  32. Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // J. Photochem. Photobiol. A. 2023. V. 435. P. 114333.
  33. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1702, Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1444.
  34. Лапаев Д.В., Никифоров В.Г., Сафиуллин Г.М. и др. // Журн. структ. химии 2009. Т. 50. № 4. С. 809, Lapaev D.V., Nikiforov V.G., Safiullin G.M. et al. // J. Struct. Chem. 2009. V. 50. No. 4. P. 775.
  35. De Sá G.F., Malta O.L., de Mello Donegá C. et al. // Coord. Chem. Rev. 2000. V. 196. P. 165.
  36. Binnemans K. // Coord. Chem. Rev. 2015. V. 295. P. 1.
  37. Frey S.T., Horrocks W.D.Jr. // Inorg. Chim. Acta 1995. V. 229. P. 383.
  38. Marques L.F., Santos H.P., D’Oliveira K.A. et al. // Inorg. Chim. Acta 2017. V. 458. P. 28.
  39. Kang J.-S., Jeong Y.-K., Shim Y.S. et al. // J. Luminescence. 2016. V. 178. P. 368.
  40. Seo S.-J., Zhao D., Suh K. et al. // J. Luminescence. 2008. V. 128. P. 565.
  41. Liang H., Chen B., Guo F. et al. // Phys. Stat. Sol. B. 2005. V. 242. P. 1087.
  42. Shahi P.K., Singh A.K., Rai S.B., Ullrich B. // Sens. Actuators A. 2015. V. 222. P. 255.
  43. Zheng Y., Cardinali F., Armaroli N., Accorsi G. // Europ. J. Inorg. Chem. 2008. P. 2075.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Structural formula of the mesogenic beta-diketonate complex Eu(DK12-14)3phen (a). Photograph of a 20 μm vitrified Eu(DK12-14)3phen film (fixed between two quartz plates measuring 7×15×0.5 mm3) under daylight (b). Transmission spectrum of a 20 μm vitrified Eu(DK12-14)3phen film (c). Micrograph of the surface of the vitrified Eu(DK12-14)3phen film obtained in the crossed polarizers mode at 500-fold magnification (d).

Жүктеу (1023KB)
3. Fig. 2. Energy level diagram for the vitrified Eu(DK12-14)3phen film (a). Solid and dashed arrows indicate radiative and nonradiative transitions, respectively. Luminescence spectrum of the vitrified Eu(DK12-14)3phen film obtained with a 10 μs delay relative to the exciting laser pulse with a wavelength of 337 nm (b).

Жүктеу (368KB)
4. Fig. 3. Normalized kinetics of Eu3+ luminescence at a wavelength of 610.5 nm in a vitrified Eu(DK12-14)3phen film. The solid line is a single-exponential approximation function with a correlation coefficient R2 = 0.99959.

Жүктеу (141KB)
5. Fig. 4. Distribution of luminescence intensity on the surface of the vitrified Eu(DK12-14)3phen film under laser excitation at a wavelength of 405 nm, obtained on a confocal optical microscope (a). Luminescence spectra of the vitrified Eu(DK12-14)3phen film (b), measured in positions 1 and 2 in panel (a).

Жүктеу (696KB)

© Russian Academy of Sciences, 2024