Conversion of a flat front of a unipolar radiation pulse into a cylindrical one
- Authors: Kornienko V.N.1, Kulagin V.V.1,2
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 89, No 1 (2025)
- Pages: 103-106
- Section: Wave Phenomena: Physics and Applications
- URL: https://innoscience.ru/0367-6765/article/view/683795
- DOI: https://doi.org/10.31857/S0367676525010172
- EDN: https://elibrary.ru/CZREUY
- ID: 683795
Cite item
Abstract
The problem of nonstationary diffraction of a monopolar TM-polarized electromagnetic pulse with a flat front on a thin slit in a perfectly conducting screen is considered. Using computational experiment methods, it has been shown that if the slit width is much smaller than the spatial length of the pulse, then a field is formed behind the screen in the form of a cylindrical monopolar pulse, i. e. there is a transformation of the shape of the incident field front without changing its character (monopolarity).
About the authors
V. N. Kornienko
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
Email: korn@cplire.ru
Moscow, Russia
V. V. Kulagin
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Lomonosov Moscow State UniversityMoscow, Russia; Moscow, Russia
References
- You D., Jones R.R., Bucksbaum P.H. // Opt. Lett. 1993. V. 18. No 4. P. 290.
- Архипов Р.М., Архипов М.В., Шимко А.А. и др. // Письма в ЖЭТФ. 2019. Т. 110. № 1. С. 9
- Arkhipov R.M., Arkhipov M.V., Shimko A.A. et al. // JETP Lett. 2019. V. 110. No. 1. P. 15.
- Розанов Н.Н., Архипов М.В., Архипов Р.М. и др. // Опт. и спектроск. 2023. Т. 131. № 2. С. 212
- Rosanov N.N., Arkhipov M.V., Arkhipov R.M. et al. // Opt. Spectrosc. 2023. V. 131. No. 2. P. 200.
- Kwang-Je Kim, McDonald K.T., Stupakov G.V., Zolotorev M.S. // arXiv:physics/0003064. 2000.
- Корниенко В.Н., Румянцев Д.Р., Черепенин В.А. // Журн. радиоэлектрон. 2017. № 3. С. 1.
- Sychugin S.A., Novokovskaya A.L., Bakunov M.I. // Phys. Rev. A. 2022. V. 105. No. 5. P. 053528.
- Ilyakov I.E., Shishkin B.V., Efimenko E.S. et al. // Opt. Express. 2022. V. 30. No. 9. P. 14978.
- Корниенко В.Н., Кулагин В.В. // Изв. РАН. Сер. физ. 2021. Т. 85. № 1. С. 64
- Kornienko V.N., Kulagin V.V. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 1. P. 50.
- Корниенко В.Н., Кулагин В.В., Гупта Д.Н. // Радиотехн. и электрон. 2021. Т. 66. № 7. С. 644
- Kornienko V.N., Kulagin V.V., Gupta D.N. // J. Commun. Technol. Electron. 2021. V. 66. No. 7. P. 818.
- Корниенко В.Н., Кулагин В.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 84
- Kornienko V.N., Kulagin V.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 59.
- Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1988.
- Бэдсел Ч., Ленгдон А. Физика плазмы и численное моделирование. М.: Энергоатомиздат, 1989. 452 с.
- Taflove A. Computational electrodynamics. The finite-difference time-domain method. London: Artech-House, 1995. 188 p.
Supplementary files
