Radioelectric effect in a superlattice based on a 3D Dirac crystal
- Autores: Valkov A.V.1, Kryuchkov S.V.1,2, Kukhar E.I.1
-
Afiliações:
- Volgograd State Technical University
- Volgograd State Socio-Pedagogical University
- Edição: Volume 89, Nº 1 (2025)
- Páginas: 18-22
- Seção: Wave Phenomena: Physics and Applications
- URL: https://innoscience.ru/0367-6765/article/view/683811
- DOI: https://doi.org/10.31857/S0367676525010037
- EDN: https://elibrary.ru/DCFZFV
- ID: 683811
Citar
Resumo
A kinetic theory for the radioelectric effect in a superlattice based on a 3D Dirac crystal in a constant electric field has been constructed. The current density has been shown to get the resonance in the case where the Bloch frequency is a multiple of the frequency of the electromagnetic wave. The latter can lead to a change in the direction of the current density. The amplitude dependence of the radioelectric current density has been studied.
Palavras-chave
Sobre autores
A. Valkov
Volgograd State Technical UniversityVolgograd, Russia
S. Kryuchkov
Volgograd State Technical University; Volgograd State Socio-Pedagogical UniversityVolgograd, Russia; Volgograd, Russia
E. Kukhar
Volgograd State Technical University
Email: eikuhar@yandex.ru
Volgograd, Russia
Bibliografia
- Yang B.-J., Nagaosa N. // Nature Commun. 2014. V. 5. Art. No. 4898.
- Umar E., Ikram M., Haider J. et al. // J. Environ. Chem. Eng. 2023. V. 11. Art. No. 110339.
- Zhong Ch., Zhang W., Ding G. et al. // Carbon. 2019. V. 154. P. 478.
- Ding Y., Li Ch., Tian M. et al. // Front. Phys. 2023. V. 18. Art. No. 53301.
- Macili A., Vlamidis Y., Pfusterschmied G. et al. // Appl. Surf. Sci. 2023. V. 615. Art. No. 156375.
- Liu Z.K., Zhou B., Wang Z.J. et al. // Science. 2014. V. 343. P. 864.
- Armitage N.P., Mele E.J., Vishwanath A. // Rev. Mod. Phys. 2018. V. 90. Art. No. 15001.
- Ameri S.K., Singh P.K., Sonkusale S.R. // Analyt. Chim. Acta. 2016. V. 934. P. 212.
- Sun Zh., Fang S., Hu Y.H. // Chem. Rev. 2020. V. 120. Art. No. 10336.
- Bolmatov D., Mou Ch.-Yu // JETP. 2011. V. 112. P. 102.
- Burkov A.A., Balents L. // Phys. Rev. Lett. 2011. V. 107. Art. No. 127205.
- Kryuchkov S.V., Kukhar’ E.I. // Physica B. 2013. V. 408. P. 188.
- Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2021. V. 151. Art. No. 111281.
- Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2022. V. 162. Art. No. 112530.
- Badikova P.V., Zav’yalov D.V., Konchenkov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 30.
- Эпштейн Э.М. // Изв. вузов. Радиофиз. 1981. Т. 24. № 4. С. 514.
- Крючков С.В., Кухарь Е.И., Сивашова Е.С. // ФТТ. 2008. Т. 50. № 6. С. 1102
- Kryuchkov S.V., Kukhar’ E.I., Sivashova E.S. // Phys. Solid State. 2008. V. 50. No. 6. P. 1150.
- Kryuchkov S.V., Kukhar’ E.I. // Physica E. 2013. V. 48. P. 96.
- Meyer J.C., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. P. 60.
- Крючков С.В., Кухарь Е.И., Ионкина Е.С. // ФТТ. 2016. Т. 58. № 7. С. 1254
- Kryuchkov S.V., Kukhar’ E.I., Ionkina E.S. // Phys. Solid State. 2016. V. 58. No. 7. P. 1295.
- Zhang G., Qin H., Teng J. et al. // Appl. Phys. Lett. 2009. V. 95. Art. No. 053114.
- Koo S., Park I., Watanabe K. et al. // Nano Lett. 2021. V. 21. No. 15. P. 6600.
- Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешет-ками. М.: Наука, 1989.
- Kryuchkov S.V., Kukhar’ E.I., Zav’yalov D.V. // Phys. Wave Phenom. 2013. V. 21. No. 3. P. 207.
Arquivos suplementares
