Radioelectric effect in a superlattice based on a 3D Dirac crystal

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A kinetic theory for the radioelectric effect in a superlattice based on a 3D Dirac crystal in a constant electric field has been constructed. The current density has been shown to get the resonance in the case where the Bloch frequency is a multiple of the frequency of the electromagnetic wave. The latter can lead to a change in the direction of the current density. The amplitude dependence of the radioelectric current density has been studied.

Sobre autores

A. Valkov

Volgograd State Technical University

Volgograd, Russia

S. Kryuchkov

Volgograd State Technical University; Volgograd State Socio-Pedagogical University

Volgograd, Russia; Volgograd, Russia

E. Kukhar

Volgograd State Technical University

Email: eikuhar@yandex.ru
Volgograd, Russia

Bibliografia

  1. Yang B.-J., Nagaosa N. // Nature Commun. 2014. V. 5. Art. No. 4898.
  2. Umar E., Ikram M., Haider J. et al. // J. Environ. Chem. Eng. 2023. V. 11. Art. No. 110339.
  3. Zhong Ch., Zhang W., Ding G. et al. // Carbon. 2019. V. 154. P. 478.
  4. Ding Y., Li Ch., Tian M. et al. // Front. Phys. 2023. V. 18. Art. No. 53301.
  5. Macili A., Vlamidis Y., Pfusterschmied G. et al. // Appl. Surf. Sci. 2023. V. 615. Art. No. 156375.
  6. Liu Z.K., Zhou B., Wang Z.J. et al. // Science. 2014. V. 343. P. 864.
  7. Armitage N.P., Mele E.J., Vishwanath A. // Rev. Mod. Phys. 2018. V. 90. Art. No. 15001.
  8. Ameri S.K., Singh P.K., Sonkusale S.R. // Analyt. Chim. Acta. 2016. V. 934. P. 212.
  9. Sun Zh., Fang S., Hu Y.H. // Chem. Rev. 2020. V. 120. Art. No. 10336.
  10. Bolmatov D., Mou Ch.-Yu // JETP. 2011. V. 112. P. 102.
  11. Burkov A.A., Balents L. // Phys. Rev. Lett. 2011. V. 107. Art. No. 127205.
  12. Kryuchkov S.V., Kukhar’ E.I. // Physica B. 2013. V. 408. P. 188.
  13. Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2021. V. 151. Art. No. 111281.
  14. Martin-Vergara F., Rus F., Villatoro F.R. // Chaos Solit. Fractals. 2022. V. 162. Art. No. 112530.
  15. Badikova P.V., Zav’yalov D.V., Konchenkov V.I. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 30.
  16. Эпштейн Э.М. // Изв. вузов. Радиофиз. 1981. Т. 24. № 4. С. 514.
  17. Крючков С.В., Кухарь Е.И., Сивашова Е.С. // ФТТ. 2008. Т. 50. № 6. С. 1102
  18. Kryuchkov S.V., Kukhar’ E.I., Sivashova E.S. // Phys. Solid State. 2008. V. 50. No. 6. P. 1150.
  19. Kryuchkov S.V., Kukhar’ E.I. // Physica E. 2013. V. 48. P. 96.
  20. Meyer J.C., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. P. 60.
  21. Крючков С.В., Кухарь Е.И., Ионкина Е.С. // ФТТ. 2016. Т. 58. № 7. С. 1254
  22. Kryuchkov S.V., Kukhar’ E.I., Ionkina E.S. // Phys. Solid State. 2016. V. 58. No. 7. P. 1295.
  23. Zhang G., Qin H., Teng J. et al. // Appl. Phys. Lett. 2009. V. 95. Art. No. 053114.
  24. Koo S., Park I., Watanabe K. et al. // Nano Lett. 2021. V. 21. No. 15. P. 6600.
  25. Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешет-ками. М.: Наука, 1989.
  26. Kryuchkov S.V., Kukhar’ E.I., Zav’yalov D.V. // Phys. Wave Phenom. 2013. V. 21. No. 3. P. 207.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025