Capabilities of optothermal traps for space ordering of microscopic objects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Experimental results on the formation of ordered structures of latex microparticles with diameters of 3 and 5 micrometers using arrays of point optothermal traps are presented. To implement these traps, the working area of the phase mask was divided into sub-elements, for each of which a specific distribution of phase delay of the prism (wedge) was specified.

全文:

受限制的访问

作者简介

А. Mayorova

Lebedev Physical Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mayorovaal@smr.lebedev.ru

Samara Branch

俄罗斯联邦, Samara

S. Kotova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

俄罗斯联邦, Samara

N. Losevsky

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

俄罗斯联邦, Samara

D. Prokopova

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

俄罗斯联邦, Samara

S. Samagin

Lebedev Physical Institute of the Russian Academy of Sciences

Email: mayorovaal@smr.lebedev.ru

Samara Branch

俄罗斯联邦, Samara

参考

  1. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  2. Jing P., Liu Y., Keeler E.G. et al. // Biomed. Opt. Express. 2018. V. 9. P. 771.
  3. Li P., Yu H., Wang X. et al. // Opt. Express. 2021. V. 29. P. 11144.
  4. Lu F., Gong L., Kuai Y. et al. // Photon. Res. 2022. V. 10. P. 14.
  5. Guex A.G., Di Marzio N., Eglin D. et al. // Mater. Today Bio. 2021. V. 10. Art. No. 100110.
  6. Yoo J., Kim J., Lee J., Kim H.H. // iScience. 2023. V. 26. No. 11. Art. No. 108178.
  7. Минаев Н.В., Юсупов В.И., Чурбанова Е.С. и др. // Прибор. и техн. экспер. 2019. № 1. С. 153.
  8. Юсупов В.И., Жигарьков В.С., Чурбанова Е.С. и др. // Квант. электрон. 2017. Т. 47. № 12. С. 1158.
  9. Zhang D., Ren Y., Barbot A. et al. // Matter. 2022. V. 5. No. 10. P. 3135.
  10. Song Y., Yin J., Huang W., et al. // Trends Analyt. Chem. 2023. Art. No. 117444.
  11. Rodrigo J.A., Martínez-Matos Ó., Alieva T. // Photon. Res. 2022. V. 10. P. 2560.
  12. Afanasiev K., Korobtsov A., Kotova S. et al. // J. Phys. Conf. Ser. 2013. V. 414. Art. No. 012017.
  13. Rubinsztein-Dunlop H., Forbes A., Berry M. et al. // J. Optics. 2017. V. 19. Art. No. 013001.
  14. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 12. С. 1685, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 12. P. 1434.
  15. Kotova S.P., Коrobtsov A.V., Losevsky N.N. et al. // J. Quant. Spectrosc. Radiat. 2021. V. 268. Art. No. 107641.
  16. Котова С.П., Лозевский Н.Н., Майорова А.М. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1682, Kotova S.P., Losevsky N.N., Mayorova A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1767.
  17. Прокопова Д.В., Котова С.П., Самагин С.А. // Изв. РАН. Сер. Физ. 2021. Т. 85. № 8. С. 1205, Prokopova D.V., Kotova S.P., Samagin S.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 928.
  18. Zemánek P., Volpe G., Jonáš A., Brzobohatý O. // Adv. Opt. Photon. 2019. V. 11. No. 3. P. 577.
  19. Zenteno-Hernandez J.A., Lozano J.V., Sarabia-Alonso J.A. et al. // Opt. Lett. 2020. V. 45. P. 3961.
  20. Hosokawa Ch., Tsuji T., Kishimoto T. et al. // J. Phys. Chem. C. 2020. V. 124. P. 8323.
  21. Lin L., Hill E.H., Peng X., Zheng Y. // Acc. Chem. Res. 2018. V. 51. P. 1465.
  22. Kollipara P., Chen Z., Zheng Y. // ACS Nano. 2023. V. 17. P. 7051.
  23. Chen Z., Li J., Zheng Y. // Chem. Rev. 2021. V. 122. P. 3122.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phase distributions (a; c; d; g) and the corresponding intensity distributions (b; d; f; h).

下载 (692KB)
3. Fig. 2. Phase masks and corresponding intensity distributions in the observation plane near the focal plane of the lens. Distances are indicated as fractions of the focal length of the lens.

下载 (1MB)
4. Fig. 3. Stills from a video illustrating the process of transferring micro-objects to an array of light traps and aligning them into intensity maxima. Top row: 4×4 trap; particle diameter: 3 μm. Bottom row: hexagonal array of 19 traps; particle diameter: 5 μm.

下载 (476KB)

版权所有 © Russian Academy of Sciences, 2024