Biosynthesis of suberiс acid from glucose through the inverted fatty acid β-oxidation by recombinant Escherichia coli strains
- Authors: Gulevich A.Y.1, Skorokhodova A.Y.1, Debabov V.G.1
-
Affiliations:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Issue: Vol 61, No 2 (2025)
- Pages: 139-148
- Section: Articles
- URL: https://innoscience.ru/0555-1099/article/view/687482
- DOI: https://doi.org/10.31857/S0555109925020031
- EDN: https://elibrary.ru/ENTNEQ
- ID: 687482
Cite item
Abstract
Using directly engineered derivatives of previously constructed adipate-producing Escherichia coli strains MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, ∆fadE, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fabI, PL-SDj10-paaJ, ∆aceBAK, ∆glcB и MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fadE, PL-SDj10-paaJ, ∆aceBAK, ∆glcB the feasibility of suberic acid biosynthesis from glucose by this bacterium resulting from the reversal of the native fatty acid β-oxidation pathway was demonstrated. The condensation of acetyl-CoA with succinyl-CoA and adipyl-CoA was ensured in recombinants by 3-oxoadipyl-CoA thiolase PaaJ, whereas the putative acetyl-CoA C-acetyltransferase YqeF was unable to catalyse the respective reactions. The biosynthesis of ~60 μM suberic acid was achieved upon significant enhancement in the strains of the expression of the bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA reductase gene, fadB. Subsequent inactivation of succinate dehydrogenase in the strains increased the intracellular availability of succinyl-CoA for the initiation of the first round of cycle reversal and favored an increase in the accumulation of the target compound by the recombinants to ~75 μM. The results provide a framework for the development of highly efficient producing strains for bio-based production of suberic acid from renewable raw materials.
Full Text

About the authors
A. Yu. Gulevich
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Author for correspondence.
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
A. Yu. Skorokhodova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
V. G. Debabov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
References
- Tarasava K., Lee S.H., Chen J., Köpke M., Jewett M.C., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2022. V. 49. № 2. kuac003. https://doi.org/10.1093/jimb/kuac003
- Fujita Y., Matsuoka H., Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829–839.
- Kim S., Cheong S., Chou A., Gonzalez R. // Curr. Opin. Biotechnol. 2016. V. 42. P.206–215. https://doi.org/10.1016/j.copbio.2016.07.004
- Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. // Nature. 2011. V. 476. P. 355–359. https://doi.org/10.1038/nature10333
- Gulevich A.Y., Skorokhodova A.Y., Sukhozhenko A.V., Shakulov R.S., Debabov V.G. // Biotechnol. Lett. 2012. V. 34. P. 463–469. https://doi.org/10.1007/s10529-011-0797-z
- Mehrer C.R., Incha M.R., Politz M.C., Pfleger B.F. // Metab. Eng. 2018. V. 48. P. 63–71. https://doi.org/10.1016/j.ymben.2018.05.011
- Chen J., Gonzalez R. // Metab. Eng. 2023. V. 79. P. 173–181. https://doi.org/10.1016/j.ymben.2023.07.006
- Kim S., Clomburg J.M., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2015. V. 42. P. 465–75. https://doi.org/10.1007/s10295-015-1589-6
- Kim S., Cheong S., Gonzalez R. // Metab. Eng. 2016. V. 36. P. 90–98. https://doi.org/10.1016/j.ymben.2016.03.005
- Gulevich A.Y., Skorokhodova A.Y., Debabov V.G. // Biomolecules. 2024. V. 14. 449. http://doi.org/10.3390/biom14040449
- Cheong S., Clomburg J.M., Gonzalez R. // Nat. Biotechnol. V. 34. № 5. P. 556–561. https://doi.org/10.1038/nbt.3505
- Lang M., Li H. // ChemSusChem. 2022. V. 15. № 1. e202101531. https://doi.org/10.1002/cssc.202101531
- Liao Z., Yeoh Y.K., Parumasivam T., Koh W.Y., Alrosan M., Alu’datt M.H., Tan T.C. // RSC Adv. 2024. V. 14. № 24. P. 17008–17021. https://doi.org/10.1039/d4ra02598a
- Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 59. № 3. С. 235–243.
- Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 60. № 3. С. 28–35.
- Sambrook J., Fritsch E., Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
- Скороходова А.Ю., Стасенко А.А., Гулевич А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2018. Т. 54. № 3. С. 244–252.
- Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. // Biotechnol. Rep. 2022. V. 33. e00703. http://doi.org/10.1016/j.btre.2022.e00703
- Datsenko K.A., Wanner B.L. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 12. Р. 6640–6645.
- Каташкина Ж.И., Скороходова А.Ю., Зименков Д.В., Гулевич А.Ю., Минаева Н.И., Дорошенко В.Г., Бирюкова И.В., Машко С.В. // Молекулярная биология. 2005. Т. 39. № 5. С. 823–831.
- Гулевич А.Ю., Скороходова А.Ю., Ермишев В.Ю., Крылов А.А., Минаева Н.И., Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547–557.
- Clark D.P., Cronan J.E. // EcoSal Plus. 2005. V. 1. 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4.
- Binstock J.F., Schulz H. // Methods. Enzymol. 1981. V. 71. P. 403–411. https://doi.org/10.1016/0076-6879(81)71051-6
- Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14390–14395. https://doi.org/10.1073/pnas.1005399107
- Deuschle U., Kammerer W., Gentz R., Bujard H. // EMBO J. 1986. V. 5. P. 2987–2994. https://doi.org/10.1002/j.1460-2075.1986.tb04596.x
Supplementary files
