The Role of Titin Phosphorylation in Changes in Myocardial Stiffness in Cardiomyopathies
- Authors: Mikhailova G.Z.1, Vikhlyantsev I.M.1, Lakomkin V.L.2
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
- National Cardiology Research Center
- Issue: Vol 110, No 3 (2024)
- Pages: 375-398
- Section: REVIEW
- URL: https://innoscience.ru/0869-8139/article/view/651661
- DOI: https://doi.org/10.31857/S0869813924030042
- EDN: https://elibrary.ru/CPYIMK
- ID: 651661
Cite item
Abstract
The review provides a brief analysis of current knowledge about such post-translational modification of titin as phosphorylation, with an emphasis on the changes that occur during the development of heart diseases. Studies conducted using animal models of heart disease, as well as using biomaterial from cardiac tissue from patients with various pathologies, show changes in the level of titin phosphorylation in comparison with healthy controls. As a rule, hyperphosphorylation of the S11878 site and hypophosphorylation of the S12022 site in the PEVK sequence of titin are observed, as well as changes in the level of phosphorylation of sites in the N2B sequence of this protein during the development of pathological changes. The functional effect of these changes is an increase in the stiffness of cardiomyocytes and cardiac muscle as a whole, which is based on the viscoelastic properties of titin, changes in which, in turn, are observed due to hypo- or hyperphosphorylation of certain sites of this protein. The review also provides a description of a number of therapeutic interventions aimed at changing the level of titin phosphorylation, which are considered as a way to change the viscoelastic properties of pathological myocardium in order to normalize its contractility.
Keywords
Full Text

About the authors
G. Z. Mikhailova
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region
I. M. Vikhlyantsev
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Author for correspondence.
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Pushchino, Moscow Region
V. L. Lakomkin
National Cardiology Research Center
Email: ivanvikhlyantsev@gmail.com
Russian Federation, Moscow
References
- Münch J, Abdelilah-Seyfried S (2021) Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart. Front Cell Dev Biol 9: 642840. https://doi.org/10.3389/fcell.2021.642840
- Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77(4): 637–648. https://doi.org/10.1016/j.cardiores.2007.03.029. PMID: 17475230
- Chauveau C, Rowell J, Ferreiro A (2014) A rising titan: TTN review and mutation update. Hum Mutat 35(9): 1046–1059. https://doi.org/10.1002/humu.22611
- Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7): 619–628. https://doi.org/10.1056/NEJMoa1110186
- Fomin A, Gärtner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L, Folsche L, Hobbach AJ, von Frieling-Salewsky M, Unger A, Hucke A, Koser F, Kassner A, Sielemann K, Streckfuß-Bömeke K, Hasenfuss G, Goedel A, Laugwitz KL, Moretti A, Gummert JF, Dos Remedios CG, Reinecke H, Knöll R, van Heesch S, Hubner N, Zimmermann WH, Milting H, Linke WA (2021) Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations. Sci Transl Med 13(618): eabd3079. https://doi.org/10.1126/scitranslmed.abd3079
- Somerville LL, Wang K (1987) In vivo phosphorylation of titin and nebulin in frog skeletal muscle. Biochem Biophys Res Commun 147(3): 986–992. https://doi.org/10.1016/s0006-291x(87)80167-5
- Somerville LL, Wang K (1988) Sarcomere matrix of striated muscle: in vivo phosphorylation of titin and nebulin in mouse diaphragm muscle. Arch Biochem Biophys 262(1): 118–129. https://doi.org/10.1016/0003-9861(88)90174-9
- Takano-Ohmuro H, Nakauchi Y, Kimura S, Maruyama K (1992) Autophosphorylation of beta-connectin (titin 2) in vitro. Biochem Biophys Res Commun 183(1): 31–35. https://doi.org/10.1016/0006-291x(92)91604-o
- Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90(11): 1181–1188. https://doi.org/10.1161/01.res.0000021115.24712.99
- Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11(5): 1711–1716. https://doi.org/10.1002/j.1460-2075.1992. tb05222.x
- Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Fürst DO, Wilmanns M, Gautel M (1999) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395(6705): 863–869. https://doi.org/10.1038/27603. Erratum in: Nature 1999 Feb 25;397(6712):719
- Gautel M, Leonard K, Labeit S (1993) Phosphorylation of KSP motifs in the C-terminal region of titin in differentiating myoblasts. EMBO J 12(10): 3827–3834. https://doi.org/10.1002/j.1460-2075.1993.tb06061.x
- Musa H, Meek S, Gautel M, Peddie D, Smith AJ, Peckham M (2006) Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci 119(Pt 20): 4322–4331. https://doi.org/10.1242/jcs.03198
- Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edström L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308(5728): 1599–1603. https://doi.org/10.1126/science.1110463
- Bogomolovas J, Fleming JR, Franke B, Manso B, Simon B, Gasch A, Markovic M, Brunner T, Knöll R, Chen J, Labeit S, Scheffner M, Peter C, Mayans O (2021) Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep 22(10): e48018. https://doi.org/10.15252/embr.201948018
- Peng J, Raddatz K, Molkentin JD, Wu Y, Labeit S, Granzier H, Gotthardt M (2007) Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115(6): 743–751. https://doi.org/10.1161/CIRCULATIONAHA.106.645499
- Sebestyén MG, Wolff JA, Greaser ML (1995) Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases. J Cell Sci 108(Pt 9): 3029–3037. https://doi.org/10.1242/jcs.108.9.3029. PMID: 8537442
- Gautel M, Goulding D, Bullard B, Weber K, Fürst DO (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109 (Pt 11): 2747–2754. https://doi.org/10.1242/jcs.109.11.2747
- Ottenheijm CA, Granzier H (2010) Role of titin in skeletal muscle function and disease. Adv Exp Med Biol 682: 105–122. https://doi.org/10.1007/978-1-4419-6366-6_6
- Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234): 293–296. https://doi.org/10.1126/science.270.5234.293
- Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86(11): 1114–1121. https://doi.org/10.1161/01.res.86.11.1114
- Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89(11): 1065–1072. https://doi.org/10.1161/hh2301.100981
- Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84(11): 1339–1352. https://doi.org/10.1161/01.res.84.11.1339
- Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitás K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86(1): 59–67. https://doi.org/10.1161/01.res.86.1.59
- Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68(3): 1027–1044. https://doi.org/10.1016/S0006-3495(95)80278-X
- Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC, Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261(1): 62–71. https://doi.org/10.1006/jmbi.1996.0441
- Granzier H, Kellermayer M, Helmes M, Trombitás K (1997) Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 73(4): 2043–2053. https://doi.org/10.1016/S0006-3495(97)78234-1
- Trombitás K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79(6): 3226–3234. https://doi.org/10.1016/S0006-3495(00)76555-6
- Helmes M, Trombitás K, Granzier H (1996) Titin develops restoring force in rat cardiac myocytes. Circ Res 79(3): 619–626. https://doi.org/10.1161/01.res.79.3.619
- Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA (2002) Titin isoform switch in ischemic human heart disease. Circulation 106(11): 1333–1341. https://doi.org/10.1161/01.cir.0000029803.93022.93
- Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML (2003) Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res 59(1): 86–94. https://doi.org/10.1016/s0008-6363(03)00328-6
- Warren CM, Krzesinski PR, Greaser ML (2003) Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 24(11): 1695–1702. https://doi.org/10.1002/elps.200305392
- Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95(7): 708–716. https://doi.org/10.1161/01.RES.0000143901.37063.2f
- Vikhlyantsev IM, Podlubnaya ZA (2012) New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions. Biochemistry (Mosc) 77(13): 1515–1535. https://doi.org/10.1134/S0006297912130093
- Fukuda N, Wu Y, Nair P, Granzier HL (2005) Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 125(3): 257–271. https://doi.org/10.1085/jgp.200409177
- Krüger M, Linke WA (2006) Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J Muscle Res Cell Motil 27(5-7): 435–444. https://doi.org/10.1007/s10974-006-9090-5
- Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM, Butt E, dos Remedios CG, Linke WA (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1): 87–94. https://doi.org/10.1161/CIRCRESAHA.108.184408
- Kötter S, Gout L, Von Frieling-Salewsky M, Müller AE, Helling S, Marcus K, Dos Remedios C, Linke WA, Krüger M (2013) Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc Res 99(4): 648–656. https://doi.org/10.1093/cvr/cvt144
- Raskin A, Lange S, Banares K, Lyon RC, Zieseniss A, Lee LK, Yamazaki KG, Granzier HL, Gregorio CC, McCulloch AD, Omens JH, Sheikh F (2012) A novel mechanism involving four-and-a-half LIM domain protein-1 and extracellular signal-regulated kinase-2 regulates titin phosphorylation and mechanics. J Biol Chem 287(35): 29273–29284. https://doi.org/10.1074/jbc.M112.372839
- Hamdani N, Krysiak J, Kreusser MM, Neef S, Dos Remedios CG, Maier LS, Krüger M, Backs J, Linke WA (2013) Crucial role for Ca2+/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Circ Res 112(4): 664–674. https://doi.org/10.1161/CIRCRESAHA.111.300105
- Perkin J, Slater R, Del Favero G, Lanzicher T, Hidalgo C, Anderson B, Smith JE 3rd, Sbaizero O, Labeit S, Granzier H (2015) Phosphorylating Titin’s Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force. Biophys J 109(12): 2592–2601. https://doi.org/10.1016/j.bpj.2015.11.002
- Murphy S, Frishman WH (2005) Protein kinase C in cardiac disease and as a potential therapeutic target. Cardiol Rev 13(1): 3–12. https://doi.org/10.1097/01.crd.0000124914.59755.8d
- Hidalgo C, Hudson B, Bogomolovas J, Zhu Y, Anderson B, Greaser M, Labeit S, Granzier H (2009) PKC phosphorylation of titin’s PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Circ Res 105(7): 631–638. https://doi.org/10.1161/CIRCRESAHA.109.198465
- Anderson BR, Bogomolovas J, Labeit S, Granzier H (2010) The effects of PKCalpha phosphorylation on the extensibility of titin’s PEVK element. J Struct Biol 170(2): 270–277. https://doi.org/10.1016/j.jsb.2010.02.00
- Hidalgo CG, Chung CS, Saripalli C, Methawasin M, Hutchinson KR, Tsaprailis G, Labeit S, Mattiazzi A, Granzier HL (2013) The multifunctional Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin’s spring elements. J Mol Cell Cardiol 54: 90–97. https://doi.org/10.1016/j.yjmcc.2012.11.012
- Herwig M, Kolijn D, Lódi M, Hölper S, Kovács Á, Papp Z, Jaquet K, Haldenwang P, Dos Remedios C, Reusch PH, Mügge A, Krüger M, Fielitz J, Linke WA, Hamdani N (2020) Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Front Physiol 11: 240. https://doi.org/10.3389/fphys.2020.00240
- Loescher CM, Breitkreuz M, Li Y, Nickel A, Unger A, Dietl A, Schmidt A, Mohamed BA, Kötter S, Schmitt JP, Krüger M, Krüger M, Toischer K, Maack C, Leichert LI, Hamdani N, Linke WA (2020) Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proc Natl Acad Sci U S A 117(39): 24545–24556. https://doi.org/10.1073/pnas.2004900117
- Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2005) Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. Pflugers Arch 449(5): 449–457. https://doi.org/10.1007/s00424-004-1354-6
- Preetha N, Yiming W, Helmes M, Norio F, Siegfried L, Granzier H (2005) Restoring force development by titin/connectin and assessment of Ig domain unfolding. J Muscle Res Cell Motil 26(6-8): 307–317. https://doi.org/10.1007/s10974-005-9037-2. PMID: 16470334
- Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110(2): 155–162. https://doi.org/10.1161/01.CIR.0000135591.37759.AF
- Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM, Granzier H (2002) Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 106(11): 1384–1389. https://doi.org/10.1161/01.cir.0000029804.61510.02
- Van Heerebeek L, Borbély A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113(16): 1966–1973. https://doi.org/10.1161/CIRCULATIONAHA.105.587519
- Borbély A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111(6): 774–781. https://doi.org/10.1161/01.CIR.0000155257.33485.6D
- Borbély A, Falcao-Pires I, van Heerebeek L, Hamdani N, Edes I, Gavina C, Leite-Moreira AF, Bronzwaer JG, Papp Z, van der Velden J, Stienen GJ, Paulus WJ (2009) Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104(6): 780–786. https://doi.org/10.1161/CIRCRESAHA.108.193326
- Van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbély A, van der Velden J, Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117(1): 43–51. https://doi.org/10.1161/CIRCULATIONAHA.107.728550
- Kötter S, Kazmierowska M, Andresen C, Bottermann K, Grandoch M, Gorressen S, Heinen A, Moll JM, Scheller J, Gödecke A, Fischer JW, Schmitt JP, Krüger M (2016) Titin-Based Cardiac Myocyte Stiffening Contributes to Early Adaptive Ventricular Remodeling After Myocardial Infarction. Circ Res 119(9): 1017–1029. https://doi.org/10.1161/CIRCRESAHA.116.309685
- Bollen IAE, Ehler E, Fleischanderl K, Bouwman F, Kempers L, Ricke-Hoch M, Hilfiker-Kleiner D, Dos Remedios CG, Krüger M, Vink A, Asselbergs FW, van Spaendonck-Zwarts KY, Pinto YM, Kuster DWD, van der Velden J (2017) Myofilament Remodeling and Function Is More Impaired in Peripartum Cardiomyopathy Compared with Dilated Cardiomyopathy and Ischemic Heart Disease. Am J Pathol 187(12): 2645–2658. https://doi.org/10.1016/j.ajpath.2017.08.022
- Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J (2017) Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol 595(14): 4677–4693. https://doi.org/10.1113/JP274145
- Burke MA, Cook SA, Seidman JG, Seidman CE (2016) Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 68(25): 2871–2886. https://doi.org/10.1016/j.jacc.2016.08.079
- Krüger M, Linke WA (2009) Titin-based mechanical signalling in normal and failing myocardium. J Mol Cell Cardiol 46(4): 490–498. https://doi.org/10.1016/j.yjmcc.2009.01.004
- Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter MM (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131(14): 1247–1259. https://doi.org/10.1161/CIRCULATIONAHA.114.013215
- Gotsman I, Keren A, Zwas DR, Lotan C, Admon D (2018) Clinical Impact of ABO and Rhesus D Blood Type Groups in Patients With Chronic Heart Failure. Am J Cardiol 122(3): 413–419. https://doi.org/10.1016/j.amjcard.2018.04.018
- Lakomkin VL, Abramov AA, Studneva IM, Ulanova AD, Vikhlyantsev IM, Prosvirnin AV, Lukoshkova EV, Kapelko VI (2020) Early changes of energy metabolism, isoformic content and level of titin phosphorylation at diastolic dysfunction. Kardiologiia 60(2): 4–9. https://doi.org/10.18087/cardio.2020.3.n531. PMID: 32345192
- Hopf AE, Andresen C, Kötter S, Isić M, Ulrich K, Sahin S, Bongardt S, Röll W, Drove F, Scheerer N, Vandekerckhove L, De Keulenaer GW, Hamdani N, Linke WA, Krüger M (2018) Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circ Res 123(3): 342–355. https://doi.org/10.1161/CIRCRESAHA.117.312166
- Rain S, Bos Dda S, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, Goebel M, Dorfmüller P, Guignabert C, Humbert M, Bogaard HJ, Remedios CD, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS (2014) Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc 3(3): e000716. https://doi.org/10.1161/JAHA.113.000716
- Vikhorev PG, Vikhoreva NN, Yeung W, Li A, Lal S, Dos Remedios CG, Blair CA, Guglin M, Campbell KS, Yacoub MH, de Tombe P, Marston SB (2022) Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc Res 118(1): 241–253. https://doi.org/10.1093/cvr/cvaa316
- Burke MA, Cook SA, Seidman JG, Seidman CE (2016) Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 68(25): 2871–2886. https://doi.org/10.1016/j.jacc.2016.08.079
- Savvatis K, Müller I, Fröhlich M, Pappritz K, Zietsch C, Hamdani N, Grote K, Schieffer B, Klingel K, Van Linthout S, Linke WA, Schultheiss HP, Tschöpe C (2014) Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Res Cardiol 109(6): 449. https://doi.org/10.1007/s00395-014-0449-2
- Hamdani N, Hervent AS, Vandekerckhove L, Matheeussen V, Demolder M, Baerts L, De Meester I, Linke WA, Paulus WJ, De Keulenaer GW (2014) Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovasc Res 104(3): 423–431. https://doi.org/10.1093/cvr/cvu223
- Mohamed BA, Schnelle M, Khadjeh S, Lbik D, Herwig M, Linke WA, Hasenfuss G, Toischer K (2016) Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 18(4): 362–371. https://doi.org/10.1002/ejhf.465
- Hudson B, Hidalgo C, Saripalli C, Granzier H (2011) Hyperphosphorylation of mouse cardiac titin contributes to transverse aortic constriction-induced diastolic dysfunction. Circ Res 109(8): 858–866. https://doi.org/10.1161/CIRCRESAHA.111.246819
- Hidalgo C, Granzier H (2013) Tuning the molecular giant titin through phosphorylation: role in health and disease. Trends Cardiovasc Med 23(5): 165–171. https://doi.org/10.1016/j.tcm.2012.10.005
- Røe ÅT, Aronsen JM, Skårdal K, Hamdani N, Linke WA, Danielsen HE, Sejersted OM, Sjaastad I, Louch WE (2017) Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovasc Res 113(10): 1161–1172. https://doi.org/10.1093/cvr/cvx087
- Mohammed SF, Storlie JR, Oehler EA, Bowen LA, Korinek J, Lam CS, Simari RD, Burnett JC Jr, Redfield MM (2012) Variable phenotype in murine transverse aortic constriction. Cardiovasc Pathol 21(3): 188–198. https://doi.org/10.1016/j.carpath.2011.05.002
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) Authors/Task Force Members; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8): 891–975. https://doi.org/10.1002/ejhf.592. Epub 2016 May 20. PMID: 27207191
- Hamdani N, Bishu KG, von Frieling-Salewsky M, Redfield MM, Linke WA (2013) Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovasc Res 97(3): 464–471. https://doi.org/10.1093/cvr/cvs353
- Falcão-Pires I, Hamdani N, Borbély A, Gavina C, Schalkwijk CG, van der Velden J, van Heerebeek L, Stienen GJ, Niessen HW, Leite-Moreira AF, Paulus WJ (2011) Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 124(10): 1151–1159. https://doi.org/10.1161/CIRCULATIONAHA.111.025270
- Rain S, Handoko ML, Trip P, Gan CT, Westerhof N, Stienen GJ, Paulus WJ, Ottenheijm CA, Marcus JT, Dorfmüller P, Guignabert C, Humbert M, Macdonald P, Dos Remedios C, Postmus PE, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128(18): 2016–2025. https://doi.org/10.1161/CIRCULATIONAHA.113.001873
- Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S, Zirngast B, Kirsch A, Steendijk P, Verderber J, Zweiker D, Eller P, Höfler G, Schauer S, Eller K, Maechler H, Pieske BM, Linke WA, Casadei B, Post H (2015) A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309(9): H1407–H1418. https://doi.org/10.1152/ajpheart.00542.2015
- Hochman-Mendez C, Curty E, Taylor DA (2020) Change the Laminin, Change the Cardiomyocyte: Improve Untreatable Heart Failure. Int J Mol Sci 21(17): 6013. https://doi.org/10.3390/ijms21176013
- Lam CS, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE, Levy D, Redfield MM, Pieske BM, Benjamin EJ, Vasan RS (2011) Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation 124(1): 24–30. https://doi.org/10.1161/CIRCULATIONAHA.110.979203. Erratum in: Circulation. 2011 Oct 25;124(17):e458
- Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, Wehrens XH, Deswal A (2012) Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 59(11): 998–1005. https://doi.org/10.1016/j.jacc.2011.11.040
- Taube A, Schlich R, Sell H, Eckardt K, Eckel J (2012) Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 302(11): H2148–H2165. https://doi.org/10.1152/ajpheart.00907.2011
- Mohammed SF, Borlaug BA, Roger VL, Mirzoyev SA, Rodeheffer RJ, Chirinos JA, Redfield MM (2012) Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community-based study. Circ Heart Fail 5(6): 710–719. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968594
- Bishu K, Deswal A, Chen HH, LeWinter MM, Lewis GD, Semigran MJ, Borlaug BA, McNulty S, Hernandez AF, Braunwald E, Redfield MM (2012) Biomarkers in acutely decompensated heart failure with preserved or reduced ejection fraction. Am Heart J 164(5): 763–770. https://doi.org/10.1016/j.ahj.2012.08.014
- Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, Dwivedi G, Patel K, Steendijk P, Ashrafian H, Henning A, Frenneaux M (2009) Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 54(5): 402–409. https://doi.org/10.1016/j.jacc.2009.05.012
- Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G, Martos R, Baugh JA, Ledwidge MT, McDonald KM (2011) Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail 13(10): 1087–1095. https://doi.org/10.1093/eurjhf/hfr079
- Hirota H, Yoshida K, Kishimoto T, Taga T (1995) Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci U S A 92(11): 4862–4866. https://doi.org/10.1073/pnas.92.11.4862
- Blanton RM (2020) cGMP Signaling and Modulation in Heart Failure. J Cardiovasc Pharmacol 75(5): 385–398. https://doi.org/10.1097/FJC.0000000000000749
- Bishu K, Hamdani N, Mohammed SF, Kruger M, Ohtani T, Ogut O, Brozovich FV, Burnett JC Jr, Linke WA, Redfield MM (2011) Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124(25): 2882–2891. https://doi.org/10.1161/CIRCULATIONAHA.111.048520
- Redfield MM (2012) Strategies to screen for stage B as a heart failure prevention intervention. Heart Fail Clin 8(2): 285–296. https://doi.org/10.1016/j.hfc.2011.12.001
- Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, Jo SH, Danner T, Zhang M, Rainer PP, Bedja D, Kirk JA, Ranek MJ, Dostmann WR, Kwon C, Margulies KB, Van Eyk JE, Paulus WJ, Takimoto E, Kass DA (2015) Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519(7544): 472–476. https://doi.org/10.1038/nature14332
- Methawasin M, Strom J, Borkowski T, Hourani Z, Runyan R, Smith JE 3rd, Granzier H (2020) Phosphodiesterase 9a Inhibition in Mouse Models of Diastolic Dysfunction. Circ Heart Fail 13(5): e006609. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006609
- Alogna A, Schwarzl M, Manninger M, Hamdani N, Zirngast B, Kloth B, Steendijk P, Verderber J, Zweiker D, Westermann D, Blankenberg S, Maechler H, Tschöpe C, Linke WA, Marsche G, Pieske BM, Post H (2018) Acute stimulation of the soluble guanylate cyclase does not impact on left ventricular capacitance in normal and hypertrophied porcine hearts in vivo. Am J Physiol Heart Circ Physiol 315(3): H669–H680. https://doi.org/10.1152/ajpheart.00510.2017
- Kolijn D, Kovács Á, Herwig M, Lódi M, Sieme M, Alhaj A, Sandner P, Papp Z, Reusch PH, Haldenwang P, Falcão-Pires I, Linke WA, Jaquet K, Van Linthout S, Mügge A, Tschöpe C, Hamdani N (2020) Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Front Physiol 11: 345. https://doi.org/10.3389/fphys.2020.00345
- Armstrong PW, Roessig L, Patel MJ, Anstrom KJ, Butler J, Voors AA, Lam CSP, Ponikowski P, Temple T, Pieske B, Ezekowitz J, Hernandez AF, Koglin J, O’Connor CM (2018) A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of the Efficacy and Safety of the Oral Soluble Guanylate Cyclase Stimulator: The VICTORIA Trial. JACC Heart Fail 6(2): 96–104. https://doi.org/10.1016/j.jchf.2017.08.013
- Armstrong PW, Lam CSP, Anstrom KJ, Ezekowitz J, Hernandez AF, O’Connor CM, Pieske B, Ponikowski P, Shah SJ, Solomon SD, Voors AA, She L, Vlajnic V, Carvalho F, Bamber L, Blaustein RO, Roessig L, Butler J; VITALITY-HFpEF Study Group (2020) Effect of Vericiguat vs Placebo on Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The VITALITY-HFpEF Randomized Clinical Trial. JAMA 324(15): 1512–1521. https://doi.org/10.1001/jama.2020.15922. Erratum in: JAMA. 2021 Feb 2;325(5):494
- Slater RE, Strom JG, Methawasin M, Liss M, Gotthardt M, Sweitzer N, Granzier HL (2019) Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. J Gen Physiol 151(1): 42–52. https://doi.org/10.1085/jgp.201812259
- Li B, Zheng Z, Wei Y, Wang M, Peng J, Kang T, Huang X, Xiao J, Li Y, Li Z (2011) Therapeutic effects of neuregulin-1 in diabetic cardiomyopathy rats. Cardiovasc Diabetol 10: 69. https://doi.org/10.1186/1475-2840-10-69
Supplementary files
