High-resolution x-ray micro-optics: technologies and materials

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The prospects for using high-resolution X-ray micro-lenses for coherent visualization tasks are discussed. Modern technologies and methods of micro-processing for the manufacture of 2D microlenses are considered using laser systems, ion-beam lithography and additive technologies as an example. The efficiency of various materials for X-ray micro-optics applications is evaluated and the time spent on manufacturing 100 nm resolution micro objectives using ion-beam lithography system is optimized.

全文:

受限制的访问

作者简介

I. Lyatun

Immanuel Kant Baltic Federal University

编辑信件的主要联系方式.
Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

P. Medvedskaya

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

А. Korotkov

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

S. Shevyrtalov

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

S. Lyatun

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

А. Snigirev

Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com

International Research Center “Coherent X-ray Optics for Megascience Facilities”

俄罗斯联邦, Kaliningrad

参考

  1. Snigirev A., Snigireva I., Lengeler B., Kohn V. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org./10.1038/384049a0
  2. Roth T., Alianelli L., Lengeler D., Snigirev A., Seiboth F. // MRS Bull. 2017. V. 42. № 6. P. 430. https://doi.org./10.1557/mrs.2017.117
  3. Snigirev A., Snigireva I. // Comptes Rendus Physique. 2008. V. 9. № 5–6. P. 507. https://doi.org./10.1016/j.crhy.2008.02.003
  4. Medvedskaya P., Lyatun I., Golubenko K., Yunkin V., Snigireva I., Snigirev A. // Proc. SPIE. EUV and X-ray Optics, Sources, Instrumentation. 2021. V. 117760I. P. 84. https://doi.org/10.1117/12.2589310
  5. Barannikov A., Polikarpov M., Ershov P., Bessonov V., Abrashitova K., Snigireva I., Yunkin V., Bourenkov G., Schneider T., Fedyaninc A.A., Snigirev A. // J. Synchr. Radiat. 2019. V. 26. № 3. P. 714–719. https://doi.org./10.1107/S1600577519001656
  6. Medvedskaya P., Lyatun I. Shevyrtalov S., Korotkov A., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // AIP Conf. Proc. 2020. V. 2299. P. 060011. https://doi.org./10.1063/5.0030736
  7. X-Ray Optics Calculator IMT RAS. Chernogolovka, 2010. http://nano.iptm.ru/xcalc/xcalc_mysql/crl_par.php. Cited 07 December 2023
  8. Kobayashi V. // J. Mater. Sci. 1988. V. 23. P. 4392. https://doi.org./10.1007/BF00551937
  9. Snigireva I., Polikarpov M., Snigirev A. // Synchr. Radiat. News. 2021. V. 34. № 6. P. 12. https://doi.org./10.1080/08940886.2021.2022387
  10. Sanli U.T., Rodgers G., Zdora M.-C., Qi P., Garrevoet J., Falch K. V., Müller B., David C., Vila-Comamala J. // Light: Sci. Applications. 2023. V. 12. № 1. P. 107. https://doi.org./10.1038/s41377-023-01157-8
  11. Petrov A., Bessonov V., Abrashitova K., Kokareva N., Safronov K., Barannikov A., Ershov P., Klimova N., Lyatun I., Yunkin V., Polikarpov M., Snigireva I., Fedyanin A., Snigirev A. // Opt. Express. 2017. V. 25. № 13. P. 14173. https://doi.org./10.1364/OE.25.014173
  12. Polikarpov M., Kononenko T., Ralchenko V., Ashkinazi E., Konov V., Ershov P., Kuznetsov S., Yunkin V., Snigireva I., Polikarpov V., Snigirev A. // Proc. SPIE. Advances in X-Ray/EUV Optics and Components XI. 2016. P. 99630Q. https://doi.org./10.1117/12.2238029
  13. Medvedskaya P., Lyatun I., Shevyrtalov S., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // Opt. Express. 2020. V. 28. № 4. P. 4773. https://doi.org./10.1364/OE.384647
  14. Brogden V., Johnson C., Rue C., Graham J., Langworthy K., Golledge J., McMorran B. // Adv. Mater. Sci. Engin. 2021. V. 2021. P. 8842777. https://doi.org./10.1155/2021/8842777
  15. Burnett T., Kelley R., Winiarski B., Contreras L., Daly M., Gholinia A., Burke M.G., Withers P.J. // Ultramicroscopy. 2016. V. 161. P. 119. https://doi.org./10.1016/j.ultramic.2015.11.001
  16. Fu J., Joshi S. B., Catchmark J.M. // J. Vac. Sci. Technol. A. 2008. V. 26. № 3. P. 422. https://doi.org./10.1116/1.2902962
  17. Ziegler J.F. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 219. P. 1027. https://doi.org./10.1016/j.nimb.2004.01.208
  18. Lyatun I., Ershov P., Snigireva I., Snigirev A. // J. Synchr. Radiat. 2020. V. 27. № 1. P. 44. https://doi.org./10.1107/S1600577519015625
  19. Polikarpov M., Emerich H., Klimova N., Snigireva I., Savin V., Snigirev A. // Phys. Stat. Sol. B. 2018. V. 255. № 1. P. 1700229. https://doi.org./10.1002/pssb.201700229
  20. Snigireva I., Irifune T., Shinmei T., Medvedskaya P., Shevyrtalov S., Bourenkov G., Polikarpov M., Rashchenko S., Snigirev A., Lyatun I. // Proc. SPIE. Advances in X-Ray/EUV Optics and Components XVI. 2021. V. 11837. P. 8. https://doi.org./10.1117/12.2594675
  21. Adams D.P., Vasile M.J., Mayer T.M., Hodges V.C. // J. Vac. Sci. Technol. B. 2003. V. 21. № 6. P. 2334. https://doi.org./10.1116/1.1619421

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of refractive and compound lenses.

下载 (26KB)
3. Fig. 2. Comparison of optical characteristics of X-ray optics materials (a), optical characteristics of a compound refractive lens depending on the radius of curvature of the parabolic profile (b).

下载 (36KB)
4. Fig. 3. Manufacturing of a diamond microlens by ion-beam lithography using gas chemistry (light areas – redeposited material), radius of curvature of the lens: a – 5.9; b – 3.3 µm.

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2024