Nanostructured Coatings of 3d-Metals Produced by Green Chemistry Methods: Analysis of Inhomogeneities by Static and Dynamic Magnetic Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study investigates carbon-containing coatings of 3d-metals (Ni, Co, Fe) produced by chemical deposition method using arabinogalactan. The coatings were analyzed using X-ray diffraction, FMR, and M(H) magnetometry. Measurement of M(H) in plane and perpendicular to the plane of the magnetic coatings allowed determining the distribution of demagnetizing factor in the studied coatings. The obtained distributions of the demagnetizing factor were used to analyze the angular dependences of the ferromagnetic resonance field. The values of magnetization and perpendicular anisotropy field were estimated. The paper illustrates the effect of texture on the magnetic parameters.

Full Text

Restricted Access

About the authors

I. G. Vazhenina

Kirensky Institute of Physics – a branch of the Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Author for correspondence.
Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

S. V. Stolyar

Siberian Federal University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

S. V. Komogortsev

Kirensky Institute of Physics – a branch of the Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

O. A. Li

Siberian Federal University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

R. S. Iskhakov

Kirensky Institute of Physics – a branch of the Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk

D. A. Velikanov

Kirensky Institute of Physics – a branch of the Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk

E. V. Cheremiskina

Siberian Federal University

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk

I. V. Nemtsev

Kirensky Institute of Physics – a branch of the Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University; Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: irina-vazhenina@mail.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk; Krasnoyarsk

References

  1. Petzold J. Advantages of softmagnetic nanocrystalline materials for modern electronic applications // J. Magn. Magn. Mater. 2002. V. 242–245. P. 84–89. https://doi.org/10.1016/S0304-8853(01)01206-9
  2. Swati, Saini M., Anupama, Shukla R. Investigation of structural, thermal, and electrical properties of magnesium substituted cobalt ferrite reinforced polyaniline nanocomposites // Ceram. Int. 2021.V. 47. P. 33835–33842. https://doi.org/10.1016 /j.ceramint.2021.08.295
  3. Wang Y., Zhang P., Liu Z., Li K., Xian C., Yang W., Luo Z., Liu S., Han J., Du H., Wang C., Yang J. The microwave absorption properties of soft magnetic materials in frequency up to 40 GHz // AIP Adv. 2023. V. 13. P. 025240. https://doi.org/ 10.1063/9.0000467
  4. Zeng S., Han S., Sun X., Wang L., Gao Y., Chen Z., Feng H. Co3O4 Nanoparticle-Modified Porous Carbons with High Microwave Absorption Performances // Nanomaterials. 2023. V. 13. P. 1073. https://doi.org/10.3390/nano13061073
  5. Qian C., Liang X., Wu M., Zhang X. Lightweight Chain-Typed Magnetic Fe3O4@rGO Composites with Enhanced Microwave-Absorption Properties // Nanomaterials. 2022. V. 12. P. 3699. https:// doi.org/10.3390/nano12203699
  6. Cheng Y., Ji G., Li Z., Lv H., Liu W., Zhao Y., Cao J., Du Y. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio // J. Alloys Compd.2017. V. 704. P. 289–295. https:// doi.org/10.1016/j.jallcom.2017.02.024
  7. Денисова Е.А., Комогорцев C.В., Чеканова Л.А., Незнахин Д.С., Исхаков Р.С., Немцев И.В. Локальная магнитная анизотропия в наноструктурированных покрытиях FeCo–C, синтезированных методами зеленой химии // ФТТ. 2022. T. 64. C. 1196–1200.
  8. Чеканова Л.А., Денисова Е.А., Исхаков Р.С., Столяр С.В., Черемискина Е.В., Ярославцев Р.Н. Способ получения металлических магнитных покрытий / RU 2710611 C1, 2019.
  9. Stolyar S.V., Yaroslavtsev R.N., Chekanova L.A., Rautskii M.V., Bayukov O.A., Cheremiskina E.V., Nemtsev I.V., Volochaev M.N., Iskhakov R.S. Ferromagnetic resonance in iron tubes deposited on a copper grid //JMMM. 2020. V. 511. P. 166979. https://doi.org/10.1016/j.jmmm.2020.166979
  10. Kuzmenko A.P., Kozhitov L., Muratov D., Rodionov V., Popkova A., Yakushko E., Dobromyslov M.B. Influence of structural features and physico-chemical properties of metal-carbon nanocomposites with ferromagnetic metal inclusions on microwave radiation // J. Nano- Electron. Phys. 2014. V. 6. P. 03024–1.
  11. Belyaev B.A., Izotov A.V., Leksikov A.A. Magnetic imaging in thin magnetic films by local spectrometer of ferromagnetic resonance // IEEE Sens. J. 2005. V. 5. P. 260–267. https://doi.org/ 10.1109/JSEN.2004.842293
  12. Zhang Z., Hammel P.C., Wigen P.E. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy // Appl. Phys. Lett. 1996. V. 68. P. 2005–2007. https://doi.org/10.1063/1.115619
  13. Rugar D., Budakian R., Mamin H.J., Chui B.W. Single spin detection by magnetic resonance force microscopy // Nature. 2004. V. 430. P. 329–332. https://doi.org/10.1038/nature02658
  14. Ilin N.V., Komogortsev S.V., Kraynova G.S., Davydenko A.V., Tkachenko I.A., Kozlov A.G., Tkachev V.V., Plotnikov V.S. Magnetic correlations peculiarities in amorphous Fe–Cu–Nb–Si–B alloy ribbons // J. Magn. Magn. Mater. 2022. V. 541. P. 168525. https://doi.org/10.1016/j.jmmm.2021.168525
  15. Комогорцев С.В., Семенов С.В., Варнаков С.Н., Балаев Д.А. Особенности фазового состава и структуры доэвтектоидной стали, проявляющиеся в поведении намагниченности вблизи магнитного насыщения// ФТТ. 2022. T. 64. C. 25–32. https://doi.org/10.21883/FTT.2022.01.51827.192
  16. Denisova E.A., Komogortsev S.V., Iskhakov R.S., Chekanova L.A., Balaev A.D., Kalinin Y.E., Sitnikov A.V. Magnetic anisotropy in multilayer nanogranular films (Co40Fe40B20)50(SiO2)50/α-Si:H // J. Magn. Magn. Mater. 2017.V. 440. P. 221–224. https://doi.org/10.1016/j.jmmm.2016.12.052
  17. Komogortsev S.V., Denisova E.A., Iskhakov R.S., Balaev A.D., Chekanova L.A., Kalinin Y.E., Sitnikov A.V. Multilayer nanogranular films (Co40Fe40B20)50(SiO2)50 / α-Si:H and (Co40 Fe40B20)50(SiO2)50 /SiO2: Magnetic properties // J. Appl. Phys. 2013. V. 113. P. 17C105. https://doi.org/10.1063/1.4794361
  18. Stolyar S., Vazhenina I., Yaroslavtsev R., Chekanova L., Cheremiskina E., Mikhlin Y. Magnetic Composite Coatings FeC and NiC Synthesized With Arabinogalactan // IEEE Magn. Lett. 2022. V. 13. P. 1–5. https://doi.org/ 10.1109/LMAG.2022.3164631
  19. Anastas P.T., Warner J.C. Green Chemistry: Theory and Practice. Oxford University Press, 1998. 135 c.
  20. Stoner E.C., Wohlfrath E.P. A mechanism of magnetic hysteresis in heterogeneous alloys // Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 1948. V. 240. P. 599–642. https://doi.org/ 10.1098/rsta.1948.0007
  21. Komogortsev S.V., Vazhenina I.G., Kleshnina S.A., Iskhakov R.S., Lepalovskij V.N., Pasynkova A.A., Svalov A.V. Advanced Characterization of FeNi-Based Films for the Development of Magnetic Field Sensors with Tailored Functional Parameters // Sensors. 2022. V. 22. P. 3324. https://doi.org/ 10.3390/s22093324
  22. Suhl H. Ferromagnetic Resonance in Nickel Ferrite Between One and Two Kilomegacycles // Phys. Rev. 1955. V. 97. P. 555–557. https://doi.org/ 10.1103/PhysRev.97.555.2
  23. Smit J., Beljers H.G. Ferromagnetic resonance absorption in BaFe12O12, a highly anisotropic crystal // Philips Res. Repts. 1955. V. 10. P. 113–130.
  24. Artman J.O. Ferromagnetic Resonance in Metal Single Crystals // Phys. Rev. 1957. V. 105. P. 74–84. https://doi.org/10.1103/PhysRev.105.74
  25. Iskhakov R.S., Komogortsev S.V. Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets // Phys. Met. Metallogr. 2011. V. 112. P. 666–681. https://doi.org/10.1134/ S0031918X11070064
  26. Komogortsev S.V., Iskhakov R.S. Law of approach to magnetic saturation in nanocrystalline and amorphous ferromagnets with improved transition behavior between power-law regimes // J. Magn. Magn. Mater. 2017. V. 440. P. 213–216. https://doi.org/10.1016/j.jmmm.2016.12.145
  27. Davydenko A.V., Kozlov A.G., Ognev A.V., Stebliy M.E., Samardak A.S., Ermakov K.S., Kolesnikov A.G., Chebotkevich L.A. Origin of perpendicular magnetic anisotropy in epitaxial Pd/Co/Pd(111) trilayers // Phys. Rev. B. 2017. V. 95. P. 064430. https://doi.org/10.1103/PhysRevB.95.064430
  28. Tannenwald P.E., Seavey M.Н. Ferromagnetic Resonance in Thin Films of Permalloy // Phys. Rev. 1957. V. 105. P. 377–378. https://doi.org/10.1103/ PhysRev.105.377
  29. Zakeri K., Lindner J., Barsukov I., Meckenstock R. Farle M., von Hörsten U., Wende H., Keune W., Rocker J., Kalarickal S.S., Lenz K., Kuch W., Baberschke K., Frait Z. Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering // Phys. Rev. B. 2007. V. 76. P. 104416. https://doi.org/10.1103/PhysRevB.76.104416
  30. Бозорт Р. Ферромагнетизм. М.: ИЛ, 1956. 784 c.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction data of Fe/C (a), Ni/C (b), Co/C (c) coatings and element cards from the ICDD database under each diffractogram. Each peak has the value of the interplanar distance in Å in front of the chemical element symbol, with Miller indices in brackets

Download (350KB)
3. Fig. 2. SEM images of Fe/C (a) and Ni-C (b) coatings. The inset of the Fe/C SEM image shows the X-ray surface mapping

Download (342KB)
4. Fig. 3. Schematic illustrating the geometry of the experiment

Download (108KB)
5. Fig. 4. Approximation of magnetisation to saturation using iron coating as an example. The black solid line is the fitting by equation (1)

Download (51KB)
6. Fig. 5. Magnetisation curves (a, b, c) in the field directed parallel (H||) and perpendicular (H⊥) to the plane of Fe (a), Co (b) and Ni (c) carbon-containing coatings, as well as histograms of the effective internal field distribution (d, e, f)

Download (211KB)
7. Fig. 6. Angular dependences of the resonance fields of coatings based on Fe/C (a, d), Co/C (b, e) and Ni/C (c, f) alloys and examples of spectra at φH = 0°

Download (394KB)
8. Fig. 7. Angular dependences of the resonance field of Fe/C (a), Co/C (b) and Ni/C (c) coatings. The rhombuses indicate the experimental values, the solid line shows the fitting curve calculated by taking into account the inhomogeneous internal field, the dashed line shows the fitting curve in the case of a homogeneous thin film. The insets show experimental FMR curves at some angles between the normal (z-axis) and the external field direction, as well as curves used in the decomposition of the experimental spectrum

Download (295KB)