Morphology and Magnetic Properties of Ni Nanowires in Thin Film Anodic Alumina Templates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of the morphology and magnetic properties of Ni nanowire arrays have been studied. Aluminum oxide matrices are used as a template for electrolytic deposition of nanowires. The matrices are obtained by anodizing the aluminum films with a thickness of 2 μm that are formed on glass substrates by high frequency ion sputtering. Electrochemical deposition of the metal is carried out using direct and alternating currents. Morphology and microstructure studies show that the nanowire arrays are polycrystalline and have a branched dendritic structure due to the morphological features of aluminum oxide matrices. A relationship between the magnetization reversal patterns and the modes of electrodeposition of Ni nanowire arrays is established. The process of magnetization reversal of an array of this kind of structures is simulated.

Full Text

Restricted Access

About the authors

A. E. Dryagina

Ural Federal University

Author for correspondence.
Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

A. N. Gorkovenko

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

N. A. Kulesh

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

E. V. Kurdyukov

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

A. V. Viblaya

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

A. A. Yushkov

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

A. A. Veryasova

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

V. I. Pastukhov

Ural Federal University; Institute of Nuclear Materials

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg; Zarechny

A. S. Kalashnikova

Ural Federal University

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg

V. O. Vaskovsky

Ural Federal University; Miheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: Anastasia.Driagina@urfu.me
Russian Federation, Ekaterinburg; Ekaterinburg

References

  1. Sniadecki N.J., Lamb C.M., Liu Y., Chen C.S. and Reich D.H. Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis // Rev. Sci. Instrum. 2008. V. 79. № 4.
  2. Mourachkine A., Yazyev O.V., Ducati C. and Ansermet J.P. Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field // Nano Lett. 2008. V. 8. № 11. P. 3683–3687.
  3. Nasirpouri F. Electrodeposition of nanostructured materials. Springer International Publishing, 2017. V. 62. P. XII 325.
  4. Moreno J.A., Bran C., Vazquez M. and Kosel J. Cylindrical magnetic nanowires applications // IEEE Trans. Magn. 2021. V. 57. № 4. P. 1–17.
  5. Fernández-Roldán J.A. Micromagnetism of cylindrical nanowires with compositional and geometric modulations. dis. – Universidad Autónoma de Madrid, 2019.
  6. Wang L., Li Y., Zhang Y., Gu H., Chen W. Rare earth compound nanowires: Synthesis, properties and applications // Rev. in Nanoscience and Nanotechnology. 2014. V. 3. № 1. P. 1–19.
  7. Muscas G., Jönsson P.E., Serrano I.G., Vallin Ö., and Kamalakar M.V. Ultralow magnetostrictive flexible ferromagnetic nanowires // Nanoscale. 2021. V. 13. P. 6043.
  8. Pateras A., Harder R., Manna S., Kiefer B., Sandberg R.L., Trugman S., Kim J.W. De La Venta J., Fullerton E.E., Shpyrko O.G., Fohtung E. Room temperature giant magnetostriction in single-crystal nickel nanowires // NPG Asia Mater. 2019. V. 11. № 1. P. 59.
  9. Alam J., Bran C., Chiriac H., Lupu N., Óvári T.A., Panina L.V., Rodionova V., Varga R., Vázquez M., Zhukov A. Cylindrical micro and nanowires: Fabrication, properties and applications // J. Magn. Magn. Mater. 2020. V. 513. P. 167074.
  10. Hu S., Zeng S., Li X., Jiang J., Yang W., Chen Y., Li M., Zheng J. Flexible and high performance of n-type thermoelectric PVDF composite film induced by nickel nanowires // Mater. Des. 2020. V. 188. P. 108496.
  11. Pham D.C., Biziere N., Melilli G., Pajon R., Lacour D., Bouvot L., Tabellout M., Lairez D., Drouhin H., Clochard M., Wegrowe J.E. Strain-induced inverse magnetostriction measured on a single contacted Ni nanowire in a polymer matrix // Mater. Res. Express. 2014. V. 1. № 4. P. 045017.
  12. Kac M., Zarzycki A., Kac S., Kopec M., Perzanowski M., Dutkiewicz E.M., Suchanek K., Maximenko A., Marszalek M. Effect of the template-assisted electrodeposition parameters on the structure and magnetic properties of Co nanowire arrays // Mater. Sci. Eng. B. 2016. V. 211. P. 75–84.
  13. Vilanova Vidal E., Ivanov Y.P., Mohammed H. and Kosel J. A detailed study of magnetization reversal in individual Ni nanowires // Appl. Phys. Lett. 2015. V. 106. №. 3.
  14. Santos A., Vojkuvka L., Pallarés J., Ferré-Borrull J. and Marsal L.F. Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process // Nanoscale Res. Lett. 2009. V. 4. P. 1021–1028.
  15. Komogortsev S.V., Chekanova L.A., Denisova E.A., Bukaemskiy A.A., Iskhakov R.S. and Mel’nikova S.V. Macro-and nanoscale magnetic anisotropy of FeNi (P) micropillars in polycarbonate membrane // J. Supercond. Nov. Magn. 2019. V. 32. P. 911–916.
  16. Yang Y., Zeng H., Wang D., Wu Y., Chen J., Huang Y., Wang P., Feng W. Fractal Growth of Quasi Two-Dimensional Copper Dendrites by Template-free Electrodeposition // Langmuir. 2023. V. 39. № 8. P. 3045–3051.
  17. Bran C., Fernandez-Roldan J.A., Del Real R.P., Asenjo A., Chubykalo-Fesenko O., and Vazquez M. Magnetic configurations in modulated cylindrical nanowires // Nanomaterials. 2021. V. 11. № 3. P. 600.
  18. Zagorskiy D.L., Doludenko I.M., Kanevsky V.M., Gilimyanova A.R., Menushenkov V.P., and Savchenko E.S. The Obtaining, Microscopy, and Properties of FeCo and FeNi Alloy Nanowires // Bulletin of the Russian Academy of Sciences: Physics. 2021. V. 85. P. 848–853.
  19. Revathy R., Varma M.R., and Surendran K.P. Effect of morphology and ageing on the magnetic properties of nickel nanowires // Mater. Res. Bull. 2019. V. 120. С. 110576.
  20. Meng G., Jung Y.J., Cao A., Vajtai R., Ajayan P.M. Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires // PNAS 2005. V. 102. № 20. P. 7074–7078.
  21. Zhang F., Jiang Y., Liu X., Meng J., Zhang P., Liu H., Wang S. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for highly efficient capture of cancer cells // Nano Lett. 2016. V. 16. № 1. P. 766–772.
  22. You L. Superconducting nanowire single-photon detectors for quantum information // Nanophotonics. 2020. V. 9. № 9. P. 2673–2692.
  23. Chen X., Chen B., Jiang B., Gao T., Shang G., Han S.T., Kuo C.-C., Roy V.A.L., Zhou Y. Nanowires for UV–vis–IR optoelectronic synaptic devices // Adv. Funct. Mater. 2023. V. 33. № 1. P. 2208807.
  24. Zhu R., Lilak S., Loeffler A., Lizier J., Stieg A., Gimzewski J., Kuncic Z. Online dynamical learning and sequence memory with neuromorphic nanowire networks //Nat. Commun. 2023. V. 14. № 1. P. 6697.
  25. Lee W., Park S.J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures //Chemical Rev. 2014. V. 114. № 15. P. 7487–7556.
  26. Piraux L. Magnetic nanowires //Applied Sciences. 2020. V. 10. № 5. P. 1832.
  27. Huang X., Tan L., Cho H. and Stadler B.J. Magnetoresistance and spin transfer torque in electrodeposited Co/Cu multilayered nanowire arrays with small diameters // J. Appl. Phys. 2009. V. 105. № 7.
  28. Gao T., Meng G., Zhang J., Sun S., Zhang L. Template synthesis of Y-junction metal nanowires // Appl. Phys. A. 2002. V. 74. P. 403–406.
  29. Guo Q., Qin L., Zhao J., Hao Y., Yan Z., Mu F., Chen P. Structural analysis and angle-dependent magnetic properties of Y-branched Ni nanowires // Physica E Low Dimens. Syst. Nanostruct. 2012. V. 44. № 10. P. 1988–1991.
  30. Воробьева А.И., Уткина Е.А., Комар О.М. Однородное осаждение никеля в поры упорядоченного тонкого оксида алюминия // Микроэлектроника. 2013. V. 43. № 2. P. 105–115.
  31. Santos A., Vojkuvka L., Pallarés J., Ferré-Borrull J., Marsal L.F. Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process // Nanoscale Res. Lett. 2009. V. 4. № 9. P. 1021–1028.
  32. Beg M., Lang M., Fangohr H. Ubermag: toward more effective micromagnetic workflows // IEEE Trans. Magn. 2021. V. 58. № 2. P. 1–5.
  33. Sun L., Hao Y., Chien C.L., Searson P.C. Tuning the properties of magnetic nanowires // IBM J. Res. Dev. 2005. V. 49. № 1. P. 79–102.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Drawing of the barrier layer of one channel in the matrix of anodized aluminium

Download (140KB)
3. Fig. 2. Scanning electron microscopy image of spalling of a sample with an array of Ni nanowires deposited in the DC (a) and AC (b) current regime

Download (122KB)
4. Fig. 3. Transmission electron microscopy image of Ni nanowires deposited in DC (a) and AC (b) regimes. The insets show the corresponding diffractograms

Download (465KB)
5. Fig. 4. Hysteresis loops obtained for samples with arrays of Ni nanowires deposited in the DC (a) and AC (b) current regime, measured parallel (red) and perpendicular (black) to the nanowire array axis

Download (226KB)
6. Fig. 5. Schematic representation of the structure given during modelling with indication of branch sizes

Download (95KB)
7. Fig. 6. Hysteresis loops obtained for Ni sample with dendritic structure (black and red lines, for calculations when the field is applied parallel and perpendicular to the structure axis, respectively) and nanowire (green and blue lines, for calculations when the field is applied parallel and perpendicular to the nanowire axis, respectively)

Download (107KB)
8. Fig. 7. Hysteresis loops obtained for a Ni sample with a dendritic structure (black and red lines, for calculations when the field is applied parallel and perpendicular to the structure axis, respectively) and the same branch structure with a 5 nm Ni magnetic material sublayer (green and blue lines, for calculations when the field is applied parallel and perpendicular to the nanowire axis, respectively)

Download (108KB)