Structure and Magnetic Properties of Iron Oxide Nanoparticles Subjected to Mechanical Treatment

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iron oxide nanoparticles have been fabricated using the electric wire explosion (EWE) technique. The structure and magnetic properties of the nanoparticles have been analyzed before and after mechanical grinding in a ball mill for different time periods, focusing on potential bioapplications. The phase composition of the nanoparticles (70% Fe3O4, 30% Fe2O3) has remained unchanged despite the mechanical effects. The average nanoparticle size has not been affected either. The observation of the Verwey transition in the studied nanoparticles, along with the structural data, provides a better understanding of the physical properties of EWE ensembles of nanoparticles in different states. The analysis of the structure and magnetic properties reveals the development of a material with a high level of internal stress. This finding may be of interest for bioapplications due to its potential impact on the material performance.

Full Text

Restricted Access

About the authors

G. V. Kurlyandskaya

Ural Federal University

Author for correspondence.
Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

E. A. Burban

Ural Federal University

Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

D. S. Neznakhin

Ural Federal University

Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

A. A. Yushkov

Ural Federal University

Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

A. Larrañaga

Universidad del País Vasco UPV/EHU

Email: galinakurlyandskaya@urfu.ru
Spain, Leioa

G. Yu. Melnikov

Ural Federal University

Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

A. V. Svalov

Ural Federal University

Email: galinakurlyandskaya@urfu.ru
Russian Federation, Ekaterinburg

References

  1. Фролов Г.И., Бачина О.И., Завьялова М.М., Равочкин С.И. Магнитные свойства наночастиц 3d-металлов // ЖТФ. 2008. Т. 78. Вып. 8. С. 101–106.
  2. Pankhurst Q.A., Connolly A.J., Jones S.K., Dobson J. Applications of Magnetic Nanoparticles in Biomedicine // J. Phys. D. 2003. V. 36. P. R167–R181.
  3. Бляхман Ф.А., Макарова Э.Б., Шабадров П.А., Фадеев Ф.А., Шкляр Т.Ф., Сафронов А.П., Комогорцев С.В., Курляндская Г.В. Магнитные наночастицы как фактор, определяющий биосовместимость феррогелей // ФММ. 2020. Т. 121. Вып. 4. С. 339–345.
  4. Buznikov N.A., Safronov A.P., Orue I., Golubeva E.V., Lepalovskij V.N., Svalov A.V., Chlenova A.A., Kurlyandskaya G.V. Modelling of magnetoimpedance responce of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection // Biosens. Bioelectron. 2018. V. 117. P. 366–372.
  5. Grossman J.H., McNeil S.E. Nanotechnology in cancer medicine // Phys. Today. 2012. V. 65. P. 38–42.
  6. Khawja Ansari S.A.M., Ficiara E., Ruffinatti F.A., Stura I., Argenziano M., Abollino O., Cavalli R., Guiot C., D’Agata F. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system // Mater. 2019. V. 12. P. 465.
  7. Sedoi V.S., Ivanov Y.F. Particles and crystallites under electrical explosion of wires // Nanotechnology. 2008. V. 19. P. 145710.
  8. Kurlyandskaya G.V., Bhagat S.M., Safronov A.P., Beketov I.V., Larranaga A. Spherical magnetic nanoparticles fabricated by electric explosion of wire // AIP Adv. 2011. V. 1. P. 042122.
  9. Safronov A.P., Samatov O.M., Tyukova I.S., Mikhnevich E.A., Beketov I.V. Heating of polyacrylamide ferrogel by alternating magnetic field // J. Magn. Magn. Mat. 2016. V. 415. P. 24–29.
  10. Beketov I.V., Safronov A.P., Medvedev A.I., Alonso J., Kurlyandskaya G.V., Bhagat S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids // AIP Adv. 2012. V. 2. P. 022154.
  11. Alcala M.D., Criado J.M., Real C., Grygar T., Nejezchleva M., Subrt J., Petrovsky E. Synthesis of nanocrystalline magnetite by mechanical alloying of iron and hematite // J. Mater. Sci. 2004. V. 39. P. 2365–2370.
  12. Rawers J.C., Govier D., Cook D. Microstructure development and stability of iron powder mechanically alloyed in a nitrogen atmosphere // J. Mater. Synth. Proces. 1995. V. 3. P. 263–272.
  13. Аплеснин С.С., Баринов Г.И. Орбитальное упорядочение в магнетике выше температуры Вервея, индуцируемое давлением // ФТТ. 2007. Т. 49. Вып. 10. С. 1858–1861.
  14. Verwey E.J.W., Haayman P.W. Electronic conductivity and transition point of magnetite (Fe3O4) // Physica. 1941. V. 8. P. 979–987.
  15. Zuo J.M., Spence J.C.H., Petuskey W. Charge ordering in magnetite at low temperatures // Phys. Rev. B. 1990. V. 42. P. 8451–8464.
  16. Мельников Г.Ю., Лепаловский В.Н., Сафронов А.П., Бекетов И.В., Багазеев А.В., Незнахин Д.С., Курляндская Г.В. Магнитные композиты на основе эпоксидной смолы с магнитными микро- и наночастицами оксида железа: фокус на магнитное детектирование // ФТТ. 2023. Т. 65. Вып. 7. С. 1100–1108.
  17. Vives S., Gaffet E., Meunier C. X-ray diffraction line profile analysis of iron ball milled powders // Mater Sci. Eng. A. 2004. V. 366. P. 229–238.
  18. Bohra M., Agarwa N., Singh V. A short review on Verwey transition in nanostructured Fe3O4 // J. Nanomater. 2019. V. 19. Article ID 8457383. 18 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TPL EWP images of the investigated batch: SEM (a) and TEM (b); SEM (c) image of commercial Alfa Aesar microparticles investigated for comparison with TPL EWPs

Download (669KB)
3. Fig. 2. XRD EWP of iron oxide nanoparticles. a - h0, initial state; the peaks of Fe3O4 magnetite and Fe2O3 maghemite are marked by vertical blue and green lines; b - h1, state after 1 h of mechanical treatment; the peaks of Fe3O4, γ-Fe2O3, FeO and Fe are marked by vertical blue, green, red and purple lines, respectively; c - h7 state after 7 h of treatment; Fe3O4, γ-Fe2O3 and FeO peaks are marked by vertical blue, green, purple lines b black lines; d - XRD data for TPL h0, h1and h7 in the angle range near the most intense peak (311), part of 2θ ≈ 35. 45° is shown by the dashed oval. The inset shows an example of fitting the most intense peaks for the ELF TPL h0 to determine the average size of the coherent scattering region for the Fe3O4 and γ-Fe2O3 phases

Download (352KB)
4. Fig. 3. Magnetic hysteresis loops of samples h0, h1, h7 (a), commercial sample AA (b). Insets - more details in the region of small magnetic fields

Download (188KB)
5. Fig. 4. ZFC-FC thermomagnetic curves for the ZFC-FC EVF in the initial state measured at different values of the external magnetic field (a, b). The arrows show the Verwey transition region (b). For comparison, the ZFC-FC curve at H = 100 E for the AA sample of commercial magnetite is given; the arrow shows the Verwey transition region (c)

Download (270KB)
6. Fig. 5. ZFC-FC thermomagnetic curves for h1 TPL EVPs measured at different values of the external magnetic field (a, b). The arrows show the Verwey transition region (b). The grey dashed lines indicate the point of the largest slope on the ZFC curve

Download (238KB)
7. Fig. 6. ZFC-FC thermomagnetic curves for the ZFC-FC EVP of h7 measured at different values of the external magnetic field (a). The same curves are shown in a narrow temperature range where the Verwey transition was observed earlier (Figs. 4, 5) (b)

Download (252KB)