Magnetocaloric and Magnetostrictive Properties of the Tb(Co,In)2 Laves Phases

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Multicomponent polycrystalline TbInxCo2–x (with х = 0–0.2) solid solutions are prepared for the first time, and their crystal structure and magnetic, magnetocaloric, and magnetostrictive properties are studied. X-ray diffraction patterns taken at room temperature demonstrate mainly the presence of the cubic C15 Laves phase in all samples. As the indium content increases to x = 0.1, the lattice parameter is found to increase; the further increase in the indium content to х = 0.2 leads to a decrease in the lattice parameter. In this case, the Curie temperature TC monotonically increases to 245 K. The isotheral magnetic entropy change ΔSmag is calculated in accordance with magnetic measurements using the thermodynamic Maxwell’s relation. At a magnetic field change from 0 to 1.8 T, the maximum entropy change monotonically decreases and, for composition with x = 0.2, is 1.8 J/(kg∙К). As the indium content increases to x = 0.05, the volume magnetostriction increases. The further increase in the indium concentration leads to the decrease in the peak values and their shift to high temperatures.

Texto integral

Acesso é fechado

Sobre autores

D. Morozov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: morozoww96@mail.ru
Rússia, Moscow

G. Politova

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Peter the Great Saint Petersburg Polytechnic University

Email: morozoww96@mail.ru
Rússia, Moscow; Saint Petersburg

M. Ganin

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: morozoww96@mail.ru
Rússia, Moscow

M. Politov

Bauman Moscow State Technical University

Email: morozoww96@mail.ru
Rússia, Moscow

A. Mikhailova

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: morozoww96@mail.ru
Rússia, Moscow

A. Filimonov

Peter the Great Saint Petersburg Polytechnic University

Email: morozoww96@mail.ru
Rússia, Saint Petersburg

Bibliografia

  1. Tishin A.M., Spichkin Y.I. The magnetocaloric effect and its applications. Institute of Physics Publishing, Bristol and Philadelphia. 2003. 480 p.
  2. Gratz E., Markosyan A.S. Physical properties of RCo2 Laves phases // J. Phys. Condensed Matter. 2001. V. 13. P. 385–413.
  3. Gerasimov E.G., Inishev A.A., Terentev P.B., Kazantsev V.A., Mushnikov N.V. Magnetostriction and thermal expansion of nonstoichiometric TbCo2Mnx compounds // J. Magn. Magn. Mater. 2021. V. 523. P. 167628.
  4. Дубенко И.С., Звездин А.К., Лагутин А.С., Левитин Р.З., Маркосян А.С., Платонов В.В., Таценко О.М. Исследование метамагнитных переходов в зонной d подситеме интерметаллидов RCo2 в сверхсильных магнитных полях до 300 Тл // Письма в ЖЭТФ. 1996. Т. 64. Вып. 3. С. 188–192.
  5. Cwik J., Kolchugina N., Nenkov K. Effect of partial Ho-substitution on the magnetic and magnetocaloric properties of polycrystalline DyCo2-based solid solutions // J. Alloys Compounds. 2013. V. 560. Р. 72–79. http://dx.doi.org/10.1016/j.jallcom.2013.01.114
  6. Александрян В.В., Белов К.П., Левитин Р.З., Маркосян А.С., Снегирев В.В. Гигантское возрастание температуры Кюри редкоземельных интерметаллических соединений RCo2 при малых замещениях магнитного кобальта немагнитным алюминием // Письма ЖЭТФ. 1984. T. 40. C. 77.
  7. Nikitin S.A., Tskhadadze G.A., Ovchenkova I.A., Zhukova D.A., Ivanova T.I. The Magnetic Phase Transitions and Magnetocaloric Effect in the Ho(Co1-xAlx)2 and Tb(Co1-xAlx)2 Compounds // Solid State Phenomena. 2011. V. 168–169. P. 119–121. https://doi.org/10.4028/www.scientific.net/SSP.168-69.119
  8. Ouyang Z.W., Rao G.H., Yang H.F., Liu W.F., Liu G.Y., Feng X.M., Liang J.K. Structure and magnetic phase transition in R(Co1−xGax)2 (R=Nd, Gd, Tb, Dy) compounds // Physica B. 2004. V. 344. P. 436.
  9. Baran S., Tyvanchuk Yu.B., Szytuła A. Crystal structure and magnetic properties of R11Co4In9 (R=Tb, Dy, Ho and Er) compounds // Intermetallics. 2021. V. 130. P. 107065.
  10. Clark A.E. Magnetostrictive RFe2 intermetallic compounds // Handbook on the Physics and Chemistry of Rare Earths, ed. by K.A. Gschneidner Jr. and L. Eyring. Chapter 15. 1979. P. 231–258.
  11. Grössinger R., Sato Turtelli R., Mehmood N. Materials with high magnetostriction // IOP Conf. Ser.: Mater. Sci. Eng. 2014. V. 60. P. 012002. https://doi.org/10.1088/1757-899X/60/1/012002
  12. Belov K.P. Magnetostriction Phenomena and Their Technical Application. Moscow: Nauka, 1987. 159 p. [in Russian].
  13. Ren W.J., Zhang Z.D. Progress in bulk MgCu2-type rare-earth iron magnetostrictive compounds // Chin. Phys. B. 2013. V. 22 (7). P. 077507.
  14. Engdahl G. Physics of Giant Magnetostriction, in Electromagnetism // Handbook of Giant Magnetostrictive Materials, Ed.: G. Engdahl, Academic Press, San Diego. Chapter 1. 2000. P. 1–125. ISBN 9780122386404. https://doi.org/10.1016/B978-012238640-4/50017-6
  15. Tereshina I.S., Politova G.A., Tereshina E.A., Burkhanov G.S., Chistyakov O.D., Nikitin S.A. Magnetocaloric effect in (Tb,Dy,R)(Co,Fe)2 (R = Ho, Er) multicomponent compounds // J. Phys. Conf. Ser. 2011. V. 266. P. 012077. 2nd International Symposium on Advanced Magnetic Materials and Applications (ISAMMA), Sendai, Japan, Jul 12–16, 2010. https://doi.org/10.1088/1742-6596/266/1/012077
  16. Chzhan V.B., Tereshina I.S., Karpenkov A.Y., Tereshina-Chitrova E.A. Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition // Acta Materialia. 2018. V. 154. P. 303–310. https://doi.org/10.1016/j.actamat.2018.05.053
  17. Tereshina I., Politova G., Tereshina E., Nikitin S., Burkhanov G., Chistyakov O., Karpenkov A. Magnetocaloric and magnetoelastic effects in (Tb0.45Dy0.55)1-xErxCo2 multicomponent compounds // J. Phys.: Conf. Series, (ICM 2009). 2010. V. 200. P. 092012. https://doi.org/10.1088/1742-6596/ 200/9/092012
  18. Pecharsky V.K., Gschneidner K.A. Magnetocaloric effect from indirect measurements: Magnetization and heat capacity // J. Appl. Phys. 1999. V. 86(1). P. 565–575. https://doi.org/10.1063/1.370767
  19. Игошев П.А. Магнитокалорический эффект и фазовое расслоение: теория и перспективы // Физика металлов и металловедение. 2023. Т. 124. № 11. С. 1065–1073. https://doi.org/10.31857/ S0015323023601058. – EDN JTMSTQ
  20. Соколовский В.В., Загребин М.А., Бучельников В.Д., Марченков В.В. Современные магнитокалорические материалы: существующие проблемы и перспективы исследований // ФММ. 2023. Т. 124. № 11. С. 1019–1024. https://doi.org/10.31857/ S0015323023601629. – EDN HIMEEV
  21. Politova G.A., Tereshina I.S., Karpenkov A.Yu., Chzhan V.B., Cwik J. Magnetism, magnetocaloric and magnetostrictive effects in RCo2 – type (R = Tb, Dy, Ho) laves phase compounds // J. Magn. Magn. Mater. Volume 591, 2024, 171700, ISSN 0304–8853. https://doi.org/10.1016/j.jmmm.2023.171700
  22. Терешина И.С., Овченкова Ю.А., Политова Г.А., Панкратов Н.Ю. Материалы на основе RCo2 и RMnSi для твердотельного магнитного охлаждения // Изв. РАН. Сер. физическая. 2023. T. 87. № 3. C. 353–358. https://doi.org/10.31857/S0367676522700624, EDN: HFYNVW
  23. Tereshina I., Cwik J., Tereshina E., Politova G., Burkhanov G., Chzhan V., Ilyushin A., Miller M., Zaleski A., Nenkov K., Schultz L. Multifunctional phenomena in rare-earth intermetallic compounds with a Laves phase structure: Giant magnetostriction and magnetocaloric effect // IEEE Trans. Mag. 2014. V. 50 (11). P. 2504604, IEEE International Magnetics Conference (Intermag), Dresden, Germany, May 04–08, 2014. https://doi.org/10.1109/TMAG.2014.2324636
  24. Politova G.A., Tereshina I.S., Cwik J. Multifunctional phenomena in Tb-Dy-Gd(Ho)-Co(Al) compounds with a Laves phase structure: Magnetostriction and magnetocaloric effect // J. Alloys Comp. 2020. V. 843. P. 155887. https://doi.org/10.1016/j.jallcom.2020.155887
  25. Tereshina I., Politova G., Tereshina E., Cwik J., Nikitin S., Chistyakov O., Karpenkov A., Karpenkov D., Palewski T. Magnetostriction in (Tb0.45Dy0.55)1-
  26. Соколовский В.В., Мирошкина О.Н., Бучельников В.Д. Обзор современных теоретических методов исследования магнитокалорических материалов // ФММ. 2022. Т. 123. № 4. С. 344–402. https://doi.org/10.31857/S0015323022040118. – EDN JSTDQR
  27. Соколовский В.В., Мирошкина О.Н., Бучельников В.Д., Марченков В.В. Магнитокалорический эффект в металлах и сплавах // ФММ. 2022. Т. 123. № 4. С. 339–343. https://doi.org/10.31857/S0015323022040106. EDN YAZZZB
  28. Tereshina I.S., Chzhan V.B., Tereshina E.A., Khmelevskyi S., Burkhanov G.S., Ilyushin A.S., Paukov M.A., Havela L., Karpenkov A.Yu., Cwik J., Koshkid’ko Yu.S., Miller M., Nenkov K., Schultz L. Magnetostructural phase transitions and magnetocaloric effect in Tb–Dy–Ho–Co–Al alloys with a Laves phase structure // J. Appl. Phys. 2016. V. 120. P. 013901(10). https://doi.org/10.1063/1.4955047
  29. Панкратов Н.Ю., Терешина И.С., Никитин С.А. Магнитокалорический эффект в редкоземельных магнетиках // Физика металлов и металловедение. 2023. Т. 124. № 11. С. 1093–1101. https://doi.org/10.31857/S0015323023601095. EDN FUAHZM
  30. Chzhan V.B., Tereshina I.S., Karpenkov A.Y., Tereshina-Chitrova E.A. Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition // Acta Mater. 2018. V. 154. P. 303–310.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Room temperature diffraction spectra for TbInxCo2-x (x = 0, 0.05, 0.1, 0.15, 0.2). Numbers indicate the reflections corresponding to the cubic structure of C15

Baixar (153KB)
3. Fig. 2. Specific magnetisation hysteresis loops for TbInxCo2-x (x = 0, 0.05, 0.1, 0.15, 0.2), inset: enlarged fragment (a), and specific magnetisation isotherms of TbIn0.2Co1.8 measured at different temperatures (b)

Baixar (443KB)
4. Fig. 3. Temperature dependences of magnetisation, inset: temperature dependence of the temperature derivative of specific magnetisation at μ0H = 0.05 Tesla (a) and Belov-Arrott curves for solid solution TbIn0.2Co1.8 (b)

Baixar (348KB)
5. Fig. 4. Temperature dependences of the change in the magnetic part of entropy ΔSmag for TbIn0.2Co1.8 near the ordering temperature, inset: field dependence of -ΔSmag (a), and TbInxCo2-x compositions (x = 0, 0.05, 0.1, 0.15, 0.2) at maximum magnetic field change up to 1.8 Tesla (b)

Baixar (321KB)
6. Fig. 5. Temperature dependences of longitudinal (a) and transverse (b) magnetostriction of the alloy TbIn0.15Co1.85

Baixar (204KB)
7. Fig. 6. Field dependences of longitudinal and transverse magnetostriction of TbInxCo2-x compositions (x = 0, 0.05, 0.1, 0.15, 0.2) at 100 K

Baixar (133KB)
8. Fig. 7. Field dependences of bulk magnetostriction of TbInxCo2-x compositions (x = 0, 0.05, 0.1, 0.15, 0.2) at Curie temperature

Baixar (118KB)
9. Fig. 8. Temperature dependences of the bulk magnetostriction of TbInxCo2-x compositions (x = 0, 0.05, 0.1, 0.15, 0.2) near the Curie temperature

Baixar (115KB)