Effect of Bismuth Oxide on the Structure, Electrical Resistance and Magnetization of Lithium Zinc Ferrite
- Authors: Nikolaevа S.A.1, Elkina Y.S.1, Lysenko E.N.1, Nikolaev E.V.1, Vlasov V.A.1
-
Affiliations:
- National Research Tomsk Polytechnic University
- Issue: Vol 125, No 4 (2024)
- Pages: 447-452
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://innoscience.ru/0015-3230/article/view/662881
- DOI: https://doi.org/10.31857/S0015323024040092
- EDN: https://elibrary.ru/WQNAJL
- ID: 662881
Cite item
Abstract
The structural, electrical, and magnetic properties of lithium zinc ferrite prepared by ceramic technology have been studied. The composition of lithium zinc ferrite is Li0.4Fe2.4Zn0.2O4 with 1 and 2 wt % bismuth oxide. The addition of Bi2O3 prior to sintering of the samples has been shown to affect the structural, electrical, and magnetic properties of the ferrite. A significant increase in density from 4.47 to 4.65 g/cm3 and a decrease in porosity from 4.8 to 2.3% have been observed when the concentration of bismuth oxide has been increased to 2 wt %. The Bi2O3-containing samples have higher specific electrical resistivity compared to that of the additive-free lithium zinc ferrite. The introduction of bismuth oxide has reduced the specific saturation magnetization from 70.55 to 54.76 G cm3/g. The Curie temperature has not changed significantly. An optimal combination of macroscopic properties of ferrite has been found at 1 wt % Bi2O3 concentration.
Full Text

About the authors
S. A. Nikolaevа
National Research Tomsk Polytechnic University
Email: ysm7@tpu.ru
Russian Federation, Tomsk
Yu. S. Elkina
National Research Tomsk Polytechnic University
Author for correspondence.
Email: ysm7@tpu.ru
Russian Federation, Tomsk
E. N. Lysenko
National Research Tomsk Polytechnic University
Email: ysm7@tpu.ru
Russian Federation, Tomsk
E. V. Nikolaev
National Research Tomsk Polytechnic University
Email: ysm7@tpu.ru
Russian Federation, Tomsk
V. A. Vlasov
National Research Tomsk Polytechnic University
Email: ysm7@tpu.ru
Russian Federation, Tomsk
References
- Rathod V., Anupama A.V., Jali V.M., Hiremath V.A., Sahoo B. Combustion synthesis, structure and magnetic properties of Li–Zn ferrite ceramic powders // Ceram. Int. 2017. V. 43. P. 14431–14440.
- Darwish M.A., Saafan S.A., El- Kony D., Salahuddin N.A. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li–Ni–Zn ferrite composites // J. Magn. Magn. Mater. 2015. V. 385. P. 99–106.
- Soibam I., Phanjoubam S., Sharma H.B., Sarma H.N.K., Prakash C. Magnetic studies of Li–Zn ferrites prepared by citrate precursor method // Phys. B. 2009. V. 404. P. 3839–3841.
- Dipti, Kumar P., Juneja J.K., Singh S., Raina K.K., Prakash C. Improved dielectric and magnetic properties in modified lithium-ferrites // Ceram. Int. 2015. V. 41. P. 3293–3297.
- Jia L., Zhao Y., Xie F., Li Q., Li Y., Liu C., Zhang H. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application // AIP Advances. 2016. V. 6. № 056214. P. 1–6.
- Lamonova S.A., Surzhikov A.P., Lysenko E.N. Electrical properties of lithium ferrite with addition of ZrO2 // IOP Conf. Ser.: Mater. Sci. Eng. 2016. С. 012091.
- Grusková A., Sláma J., Dosoudil R., Ušáková M., Jančárik V., Ušák E. Microwave properties of some substituted LiZn ferrites // J. Magn. Magn. Mater. 2008. V. 320. № 20.
- Nikolaev E.V., Astafyev A.L., Nikolaeva S.A., Lysenko E.N., Zeiniden A.K. Investigation of electrical properties homogeneity of Li–Ti–Zn ferrite ceramics // Eurasian phys. tech. j. 2020. V. 17. P. 5–12.
- Мамниашвили Г.И., Гегечкори Т.О., Гавашели Ц.А. Исследование природы сигнала ЯМР в феррите лития при воздействии низкочастотного магнитного поля // ФММ. 2021. Т. 122. № 9. С. 902–907.
- Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Bordunov S.V., Nikolaeva S.A. Dilatometric and kinetic analysis of sintering Li–Zn ferrite ceramics from milled reagents // J. Therm. Anal. Calorim. 2020. V. 142. P. 1783–1789.
- Baba P., Argentina G., Courtney W., Dionne G., Temme D. Fabrication and properties of microwave lithium ferrites // IEEE Trans. Magn. 1972. V. 8. P. 93–94.
- Guo R., Yu Z., Yang Y., Jiang X., Sun K., Wu C., Xu Z., Lan Z.О. Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite // J. Alloys. Compd. 2014. V. 589. P. 1–4.
- Ridgley D.H., Lessoff H., Childress J.V. Effects of Lithium and Oxygen Losses on Magnetic and Crystallographic Properties of Spinel Lithium Ferrite // J. American Ceramic Society. 1970. V. 53. P. 304–311.
- Gao Yu., Wang Zh. Effect of Mo substitution on the structural and soft magnetic properties of Li–Zn ferrites // J. Sol-Gel Sci. Technol. 2019. V. 91. P. 111–116.
- Teo M.L.S., Kong L.B., Li Z.W., Lin G.Q., Gan Y.B. Development of magneto-dielectric materials based on Li-ferrite ceramics: I. Densification behavior and microstructure development // J. Alloys. Compd. 2008. V. 459. P. 557–566.
- Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. Физико-химические основы получения, свойства и применения ферритов. М.: Металлургия, 1979. 472 с.
- Martinson K.D., Panteleev I.B., Steshenko K.A., Popkov V.I. Effect of Bi2O3 contents on magnetic and electromagnetic properties of LiZnMn ferrite ceramics // J. the Europ. Ceramic Soc. 2022. V. 42. № 8. P. 3463–3472.
- Liao Y., Wang Y., Chen Zh., Wang X., Li J., Guo R. Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3–Al2O3 additive // Ceram. Int. 2020. V. 46. P. 487–492.
- Yu Z., Chen D., Lan Z., Jiang X., Liu B. Effect of Bi2O3 on properties of lithium-zinc ferrite // J. Inorg. Mater. 2007. V. 22. P. 1173–1177.
- Kaneva I.I., Kostishin V.G., Andreev V.G., Nikolaev A.N., Volkova E.I. The effect of additives on the properties of bismuth Mn–Zn ferrite // Modern Electronic Materials. 2015. V. 1. № 8. P. 76–81.
- Fang X., Xiaolei S., Yulong L., Jie L., Jianbo H. Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramic // Ceram. Int. 2020. V. 46. P. 14669–14673.
- Clarysse T., Vanhaeren D., Hoflijk I., Vandervorst W. Characterization of electrically active dopant profiles with the spreading resistance probe // Mater. Sci. Eng. R. 2004. V. 47. P. 123–206.
- Макаревич К.С., Кириченко Е.А., Каминский О.И., Зайцев А.В., Пячин С.А. Получение бетта и аморфной форм оксида висмута различной дисперсности пиролитическим методом и исследование их оптических и морфологических свойств // Бюллетень научных сообщений. 2018. Т. 23. С. 17–21.
- Kalinchenko F.V., Borzenkova M.P., Novoselova A.V. The Bi2O3–BiF3 System // Rus. J. Inorg. Chem. 1981. V. 26. P. 118–120.
- Wang X., Zhang H., Li J., Jin L., Liu Ch., Liao Y., Liu K. Influence of Bi2O3–Nb2O5 additive on microstructure and magnetic properties of LiZn ferrites // J. Magn. Magn. Mater. 2022. V. 564. Р. 170165.
- Zhou T., Zhang H., Liu Ch., Jin L., Xu F., Liao Y., Jia N., Wang Y. Li2O–B2O3–SiO2–CaO–Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology // Ceram. Int. 2016. V. 42. P. 16198–16204.
- Lysenko E.N., Astafyev A.L., Vlasov V.A., Surzhikov A.P. Analysis of phase composition of LiZn and LiTi ferrites by XRD and thermomagnetometric analysis// J. Magn. Magn. Mater. 2018. V. 465. P. 457–461.
- Сафантьевский А.П. Поликристаллические феррошпинели СВЧ. Современное состояние и перспективы развития // Обзоры по электронной технике. Сер. 6 “Материалы”. 1979. Т. 9 (670). 56 с.
Supplementary files
