Effect of Bismuth Oxide on the Structure, Electrical Resistance and Magnetization of Lithium Zinc Ferrite

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structural, electrical, and magnetic properties of lithium zinc ferrite prepared by ceramic technology have been studied. The composition of lithium zinc ferrite is Li0.4Fe2.4Zn0.2O4 with 1 and 2 wt % bismuth oxide. The addition of Bi2O3 prior to sintering of the samples has been shown to affect the structural, electrical, and magnetic properties of the ferrite. A significant increase in density from 4.47 to 4.65 g/cm3 and a decrease in porosity from 4.8 to 2.3% have been observed when the concentration of bismuth oxide has been increased to 2 wt %. The Bi2O3-containing samples have higher specific electrical resistivity compared to that of the additive-free lithium zinc ferrite. The introduction of bismuth oxide has reduced the specific saturation magnetization from 70.55 to 54.76 G cm3/g. The Curie temperature has not changed significantly. An optimal combination of macroscopic properties of ferrite has been found at 1 wt % Bi2O3 concentration.

Full Text

Restricted Access

About the authors

S. A. Nikolaevа

National Research Tomsk Polytechnic University

Email: ysm7@tpu.ru
Russian Federation, Tomsk

Yu. S. Elkina

National Research Tomsk Polytechnic University

Author for correspondence.
Email: ysm7@tpu.ru
Russian Federation, Tomsk

E. N. Lysenko

National Research Tomsk Polytechnic University

Email: ysm7@tpu.ru
Russian Federation, Tomsk

E. V. Nikolaev

National Research Tomsk Polytechnic University

Email: ysm7@tpu.ru
Russian Federation, Tomsk

V. A. Vlasov

National Research Tomsk Polytechnic University

Email: ysm7@tpu.ru
Russian Federation, Tomsk

References

  1. Rathod V., Anupama A.V., Jali V.M., Hiremath V.A., Sahoo B. Combustion synthesis, structure and magnetic properties of Li–Zn ferrite ceramic powders // Ceram. Int. 2017. V. 43. P. 14431–14440.
  2. Darwish M.A., Saafan S.A., El- Kony D., Salahuddin N.A. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li–Ni–Zn ferrite composites // J. Magn. Magn. Mater. 2015. V. 385. P. 99–106.
  3. Soibam I., Phanjoubam S., Sharma H.B., Sarma H.N.K., Prakash C. Magnetic studies of Li–Zn ferrites prepared by citrate precursor method // Phys. B. 2009. V. 404. P. 3839–3841.
  4. Dipti, Kumar P., Juneja J.K., Singh S., Raina K.K., Prakash C. Improved dielectric and magnetic properties in modified lithium-ferrites // Ceram. Int. 2015. V. 41. P. 3293–3297.
  5. Jia L., Zhao Y., Xie F., Li Q., Li Y., Liu C., Zhang H. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application // AIP Advances. 2016. V. 6. № 056214. P. 1–6.
  6. Lamonova S.A., Surzhikov A.P., Lysenko E.N. Electrical properties of lithium ferrite with addition of ZrO2 // IOP Conf. Ser.: Mater. Sci. Eng. 2016. С. 012091.
  7. Grusková A., Sláma J., Dosoudil R., Ušáková M., Jančárik V., Ušák E. Microwave properties of some substituted LiZn ferrites // J. Magn. Magn. Mater. 2008. V. 320. № 20.
  8. Nikolaev E.V., Astafyev A.L., Nikolaeva S.A., Lysenko E.N., Zeiniden A.K. Investigation of electrical properties homogeneity of Li–Ti–Zn ferrite ceramics // Eurasian phys. tech. j. 2020. V. 17. P. 5–12.
  9. Мамниашвили Г.И., Гегечкори Т.О., Гавашели Ц.А. Исследование природы сигнала ЯМР в феррите лития при воздействии низкочастотного магнитного поля // ФММ. 2021. Т. 122. № 9. С. 902–907.
  10. Nikolaev E.V., Lysenko E.N., Surzhikov A.P., Bordunov S.V., Nikolaeva S.A. Dilatometric and kinetic analysis of sintering Li–Zn ferrite ceramics from milled reagents // J. Therm. Anal. Calorim. 2020. V. 142. P. 1783–1789.
  11. Baba P., Argentina G., Courtney W., Dionne G., Temme D. Fabrication and properties of microwave lithium ferrites // IEEE Trans. Magn. 1972. V. 8. P. 93–94.
  12. Guo R., Yu Z., Yang Y., Jiang X., Sun K., Wu C., Xu Z., Lan Z.О. Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite // J. Alloys. Compd. 2014. V. 589. P. 1–4.
  13. Ridgley D.H., Lessoff H., Childress J.V. Effects of Lithium and Oxygen Losses on Magnetic and Crystallographic Properties of Spinel Lithium Ferrite // J. American Ceramic Society. 1970. V. 53. P. 304–311.
  14. Gao Yu., Wang Zh. Effect of Mo substitution on the structural and soft magnetic properties of Li–Zn ferrites // J. Sol-Gel Sci. Technol. 2019. V. 91. P. 111–116.
  15. Teo M.L.S., Kong L.B., Li Z.W., Lin G.Q., Gan Y.B. Development of magneto-dielectric materials based on Li-ferrite ceramics: I. Densification behavior and microstructure development // J. Alloys. Compd. 2008. V. 459. P. 557–566.
  16. Левин Б.Е., Третьяков Ю.Д., Летюк Л.М. Физико-химические основы получения, свойства и применения ферритов. М.: Металлургия, 1979. 472 с.
  17. Martinson K.D., Panteleev I.B., Steshenko K.A., Popkov V.I. Effect of Bi2O3 contents on magnetic and electromagnetic properties of LiZnMn ferrite ceramics // J. the Europ. Ceramic Soc. 2022. V. 42. № 8. P. 3463–3472.
  18. Liao Y., Wang Y., Chen Zh., Wang X., Li J., Guo R. Microstructure and enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrite ceramics with Bi2O3–Al2O3 additive // Ceram. Int. 2020. V. 46. P. 487–492.
  19. Yu Z., Chen D., Lan Z., Jiang X., Liu B. Effect of Bi2O3 on properties of lithium-zinc ferrite // J. Inorg. Mater. 2007. V. 22. P. 1173–1177.
  20. Kaneva I.I., Kostishin V.G., Andreev V.G., Nikolaev A.N., Volkova E.I. The effect of additives on the properties of bismuth Mn–Zn ferrite // Modern Electronic Materials. 2015. V. 1. № 8. P. 76–81.
  21. Fang X., Xiaolei S., Yulong L., Jie L., Jianbo H. Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramic // Ceram. Int. 2020. V. 46. P. 14669–14673.
  22. Clarysse T., Vanhaeren D., Hoflijk I., Vandervorst W. Characterization of electrically active dopant profiles with the spreading resistance probe // Mater. Sci. Eng. R. 2004. V. 47. P. 123–206.
  23. Макаревич К.С., Кириченко Е.А., Каминский О.И., Зайцев А.В., Пячин С.А. Получение бетта и аморфной форм оксида висмута различной дисперсности пиролитическим методом и исследование их оптических и морфологических свойств // Бюллетень научных сообщений. 2018. Т. 23. С. 17–21.
  24. Kalinchenko F.V., Borzenkova M.P., Novoselova A.V. The Bi2O3–BiF3 System // Rus. J. Inorg. Chem. 1981. V. 26. P. 118–120.
  25. Wang X., Zhang H., Li J., Jin L., Liu Ch., Liao Y., Liu K. Influence of Bi2O3–Nb2O5 additive on microstructure and magnetic properties of LiZn ferrites // J. Magn. Magn. Mater. 2022. V. 564. Р. 170165.
  26. Zhou T., Zhang H., Liu Ch., Jin L., Xu F., Liao Y., Jia N., Wang Y. Li2O–B2O3–SiO2–CaO–Al2O3 and Bi2O3 co-doped gyromagnetic Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics for LTCC Technology // Ceram. Int. 2016. V. 42. P. 16198–16204.
  27. Lysenko E.N., Astafyev A.L., Vlasov V.A., Surzhikov A.P. Analysis of phase composition of LiZn and LiTi ferrites by XRD and thermomagnetometric analysis// J. Magn. Magn. Mater. 2018. V. 465. P. 457–461.
  28. Сафантьевский А.П. Поликристаллические феррошпинели СВЧ. Современное состояние и перспективы развития // Обзоры по электронной технике. Сер. 6 “Материалы”. 1979. Т. 9 (670). 56 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of LiZn-ferrite with different contents of Bi2O3 additive

Download (117KB)
3. Fig. 2. SEM images of the surface of LiZn-ferrite sintered with different Bi2O3 content

Download (428KB)
4. Fig. 3. DTG curves of LiZn ferrite with different contents of Bi2O3 additive

Download (67KB)