Increasing the Level of Knock-in of a Construct Encoding the HIV-1 Fusion Inhibitor, MT-C34 Peptide, into the CXCR4 Locus in the CEM/R5 T Cell Line
- Authors: Golubev D.S.1, Komkov D.S.1,2, Shepelev M.V.1, Mazurov D.V.1,3, Kruglova N.A.1
-
Affiliations:
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
- Issue: Vol 58, No 4 (2024)
- Pages: 575–589
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655302
- DOI: https://doi.org/10.31857/S0026898424040044
- EDN: https://elibrary.ru/INCWAV
- ID: 655302
Cite item
Abstract
The low efficiency of knock-in, especially in primary human cells, limits the use of genome editing technology for therapeutic purposes, which makes it important to develop approaches for increasing knock-in levels. In this work, using a knock-in model of the peptide fusion inhibitor of HIV MT-C34 into the human CXCR4 locus in the CEM/R5 T cell line, we analyzed the effectiveness of several approaches to increasing knock-in levels. First, donor DNA modification aimed at improving the efficiency of plasmid transport into the nucleus was evaluated, namely the introduction into the donor plasmid of the SV40 DNA transport sequence (DTS) or the binding sites for the transcription factor NF-κB, whose effects on knock-in levels have not been described. In the MT-C34 knock-in model into the CXCR4 locus, this modification was ineffective. The second approach, modifying the Cas9 nuclease by introducing two additional nuclear localization signals (NLS), increased the knock-in level by 30%. Finally, blocking DNA repair via the nonhomologous end joining pathway using DNA-dependent protein kinase inhibitors caused a 1.8-fold increase in knock-in. The combination of the last two approaches caused an additive effect. Thus, increasing the number of NLSs in the Cas9 protein and inhibiting DNA repair via the nonhomologous end joining pathway significantly increased the level of knock-in of the HIV-1 peptide fusion inhibitor into the clinically relevant locus CXCR4, which can be used to develop effective gene therapy approaches for the treatment of HIV infection.
Keywords
Full Text

About the authors
D. S. Golubev
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
D. S. Komkov
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Beer-Sheva, 8410501 Israel
M. V. Shepelev
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
D. V. Mazurov
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Minneapolis, 55455 USA
N. A. Kruglova
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
Author for correspondence.
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
References
- Jinek M., East A., Cheng A., Lin S., Ma E., Doudna J. (2013) RNA-programmed genome editing in human cells. Elife. 2, e00471. https://doi.org/10.7554/ELIFE.00471
- Jiang F., Doudna J.A. (2017) CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822
- Nambiar T.S., Baudrier L., Billon P., Ciccia A. (2022) CRISPR-based genome editing through the lens of DNA repair. Mol. Cell. 82, 348–388. https://doi.org/10.1016/j.molcel.2021.12.026
- Li T., Yang Y., Qi H., Cui W., Zhang L., Fu X., He X., Liu M., Li P.F., Yu T. (2023) CRISPR/Cas9 therapeutics: progress and prospects. Signal. Transduct. Target Ther. 8, 36. https://doi.org/10.1038/s41392-023-01309-7
- Pavlovic K., Tristán-Manzano M., Maldonado-Pérez N., Cortijo-Gutierrez M., Sánchez-Hernández S., Justicia-Lirio P., Carmona M.D., Herrera C., Martin F., Benabdellah K. (2020) Using gene editing approaches to fine-tune the immune system. Front. Immunol. 11, 570672. https://doi.org/10.3389/fimmu.2020.570672
- Cornu T.I., Mussolino C., Müller M.C., Wehr C., Kern W.V., Cathomen T. (2021) HIV gene therapy: an update. Hum. Gene Ther. 32, 52–65. https://doi.org/10.1089/HUM.2020.159
- Liu M., Rehman S., Tang X., Gu K., Fan Q., Chen D., Ma W. (2019) Methodologies for improving HDR efficiency. Front. Genet. 9, 691. https://doi.org/10.3389/fgene.2018.00691
- Maslennikova A., Kruglova N., Kalinichenko S., Komkov D., Shepelev M., Golubev D., Siniavin A., Vzorov A., Filatov A., Mazurov D. (2022) Engineering T-cell resistance to HIV-1 infection via knock-in of peptides from the heptad repeat 2 domain of gp41. mBio. 13, e0358921. https://doi.org/10.1128/mbio.03589-21
- Dean D.A., Dean B.S., Muller S., Smith L.C. (1999) Sequence requirements for plasmid nuclear import. Exp. Cell Res. 253, 713–722. https://doi.org/10.1006/EXCR.1999.4716
- Bai H., Lester G.M.S., Petishnok L.C., Dean D.A. (2017) Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 37, BSR20160616. https://doi.org/10.1042/BSR20160616
- Vacik J., Dean B.S., Zimmer W.E., Dean D.A. (1999) Cell-specific nuclear import of plasmid DNA. Gene Ther. 6, 1006–1014. https://doi.org/10.1038/sj.gt.3300924
- Young J.L., Benoit J.N., Dean D.A. (2003) Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. Gene Ther. 10, 1465–1470. https://doi.org/10.1038/sj.gt.3302021
- Mesika A., Grigoreva I., Zohar M., Reich Z. (2001) A regulated, NFκB-assisted import of plasmid DNA into mammalian cell nuclei. Mol. Ther. 3, 653–657. https://doi.org/10.1006/mthe.2001.0312
- Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819–823. https://doi.org/10.1126/science.1231143
- Maggio I., Zittersteijn H.A., Wang Q., Liu J., Janssen J.M., Ojeda I.T., van der Maarel S.M., Lankester A.C., Hoeben R.C., Gonçalves M.A.F.V. (2020) Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther. 27, 209–225. https://doi.org/10.1038/s41434-019-0119-y
- Shams F., Bayat H., Mohammadian O., Mahboudi S., Vahidnezhad H., Soosanabadi M., Rahimpour A. (2022) Advance trends in targeting homology-directed repair for accurate gene editing: an inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts. 12, 371–391. https://doi.org/10.34172/bi.2022.23871
- Makkerh J.P.S., Dingwall C., Laskey R.A. (1996) Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027. https://doi.org/10.1016/S0960-9822(02)00648-6
- Zotova A., Pichugin A., Atemasova A., Knyazhanskaya E., Lopatukhina E., Mitkin N., Holmuhamedov E., Gottikh M., Kuprash D., Filatov A., Mazurov D. (2019) Isolation of gene-edited cells via knock-in of short glycophosphatidylinositol-anchored epitope tags. Sci. Rep. 9, 3132. https://doi.org/10.1038/S41598-019-40219-Z
- Shin S., Kim S.H., Lee J.S., Lee G.M. (2021) Streamlined human cell-based recombinase-mediated cassette exchange platform enables multigene expression for the production of therapeutic proteins. ACS Synth. Biol. 10, 1715–1727. https://doi.org/10.1021/acssynbio.1c00113
- Nguyen D.N., Roth T.L., Li P.J., Chen P.A., Apathy R., Mamedov M.R., Vo L.T., Tobin V.R., Goodman D., Shifrut E., Bluestone J.A., Puck J.M., Szoka F.C., Marson A. (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49. https://doi.org/10.1038/s41587-019-0325-6
- Shy B.R., Vykunta V.S., Ha A., Talbot A., Roth T.L., Nguyen D.N., Pfeifer W.G., Chen Y.Y., Blaeschke F., Shifrut E., Vedova S., Mamedov M.R., Chung J.J., Li H., Yu R., Wu D., Wolf J., Martin T.G., Castro C.E., Ye L., Esensten J.H., Eyquem J., Marson A. (2023) High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531. https://doi.org/10.1038/s41587-022-01418-8
- Pinder J., Salsman J., Dellaire G. (2015) Nuclear domain 'knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43, 9379–9392. https://doi.org/10.1093/nar/gkv993
- Kath J., Du W., Pruene A., Braun T., Thommandru B., Turk R., Sturgeon M.L., Kurgan G.L., Amini L., Stein M., Zittel T., Martini S., Ostendorf L., Wilhelm A., Akyüz L., Rehm A., Höpken U.E., Pruß A., Künkele A., Jacobi A.M., Volk H.D., Schmueck-Henneresse M., Stripecke R., Reinke P., Wagner D.L. (2022) Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol. Ther. Methods Clin. Dev. 25, 311–330. https://doi.org/10.1016/j.omtm.2022.03.018
- Young J.L., Zimmer W.E., Dean D.A. (2008) Smooth muscle-specific gene delivery in the vasculature based on restriction of DNA nuclear import. Exp. Biol. Med. 233, 840–848. https://doi.org/10.3181/0712-RM-331
- Degiulio J.V., Kaufman C.D., Dean D.A. (2010) The SP-C promoter facilitates alveolar type II epithelial cell-specific plasmid nuclear import and gene expression. Gene Ther. 17, 541–549. https://doi.org/10.1038/gt.2009.166
- Schulze-Luehrmann J., Ghosh S. (2006) Antigen-receptor signaling to nuclear factor κB. Immunity. 25, 701–715. https://doi.org/10.1016/j.immuni.2006.10.010
- Wu W., Nie L., Zhang L., Li Y. (2018) The notch pathway promotes NF-κB activation through Asb2 in T cell acute lymphoblastic leukemia cells. Cell. Mol. Biol. Lett. 23, 37. https://doi.org/10.1186/s11658-018-0102-4
- Castro-caldas M., Mendes A.F., Carvalho A.P., Duarte C.B., Lopes M.C. (2003) Dexamethasone prevents interleukin-1β-induced nuclear factor-κB activation by upregulating IκB-α synthesis, in lymphoblastic cells. Mediators Inflamm. 12, 37–46. https://doi.org/10.1080/0962935031000096953
- Remy S., Chenouard V., Tesson L., Usal C., Ménoret S., Brusselle L., Heslan J.M., Nguyen T.H., Bellien J., Merot J., De Cian A., Giovannangeli C., Concordet J.P., Anegon I. (2017) Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci. Rep. 7, 16554. https://doi.org/10.1038/s41598-017-16328-y
- Shui S., Wang S., Liu J. (2022) Systematic investigation of the effects of multiple SV40 nuclear localization signal fusion on the genome editing activity of purified SpCas9. Bioengineering. 9, 83. https://doi.org/10.3390/bioengineering9020083
- Fu Y.-W., Dai X.Y., Wang W.T., Yang Z.X., Zhao J.J., Zhang J.P., Wen W., Zhang F., Oberg K.C., Zhang L., Cheng T., Zhang X.B. (2021) Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Res. 49, 969–985. https://doi.org/10.1093/nar/gkaa1251
- Killian T., Dickopf S., Haas A.K., Kirstenpfad C., Mayer K., Brinkmann U. (2017) Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci. Rep. 7, 15480. https://doi.org/10.1038/s41598-017-15206-x
- Wienert B., Nguyen D.N., Guenther A., Feng S.J., Locke M.N., Wyman S.K., Shin J., Kazane K.R., Gregory G.L., Carter M.A.M., Wright F., Conklin B.R., Marson A., Richardson C.D., Corn J.E. (2020) Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat. Commun. 11, 2109. https://doi.org/10.1038/s41467-020-15845-1
Supplementary files
