Increasing the Level of Knock-In of the MT-C34-Encoding Construct into the CXCR4 Locus by Modifying Donor DNA with Cas9 Target Sites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For successful application of genome editing technology using CRISPR/Cas9 system in clinical practice, it is necessary to achieve high efficiency of knock-in, the insertion of a genetic construct into a given locus in the genome of a target cell. One approach to increasing knock-in efficiency involves modifying donor DNA with the same targets for Cas9 (Cas9 targeting sequence, CTS) that are used for induction of double-strand breaks in the cell genome (the “double-cut donor” method). Another approach is based on introducing truncated targets for Cas9 (truncated CTS, tCTS), including a PAM site and 16 nucleotides proximal to it, into the donor DNA. Presumably, tCTS sites do not induce cleavage of the donor plasmid, but can support its transport into the nucleus by Cas9. However, the exact mechanisms for the increase in knock-in levels with both types of donor DNA modifications are unknown. Here, we evaluated the effect of these modifications on the knock-in efficiency of the MTC34 genetic construct encoding the HIV-1 fusion inhibitor, MT-C34 peptide, into the CXCR4 locus of the CEM/R5 T cell line. When full-length CTS sites were introduced into the donor plasmid DNA, the knock-in level increased twofold, regardless of the number of CTSs or their position relative to the donor sequence. Modifications of donor plasmids with tCTS sites did not affect knock-in levels. It was found that in vitro both types of sites were efficiently cleaved by Cas9. In order to study the mechanism of action of these modifications in detail, it is necessary to evaluate their cleavage in vitro and in vivo.

Full Text

Restricted Access

About the authors

M. V. Shepelev

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334

D. S. Komkov

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev

Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Beer-Sheva, 8410501 Israel

D. S. Golubev

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334

S. E. Borovikova

Institute of Gene Biology, Russian Academy of Sciences

Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334

D. V. Mazurov

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota

Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Minneapolis, 55455 USA

N. A. Kruglova

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota

Author for correspondence.
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Minneapolis, 55455 USA

References

  1. Doudna J.A. (2020) The promise and challenge of therapeutic genome editing. Nature. 578, 229–236. https://doi.org/10.1038/s41586-020-1978-5
  2. Jiang F., Doudna J.A. (2017) CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822
  3. Antoniani C., Meneghini V., Lattanzi A., Felix T., Romano O., Magrin E., Weber L., Pavani G., El Hoss S., Kurita R., Nakamura Y., Cradick T.J., Lundberg A.S., Porteus M., Amendola M., El Nemer W., Cavazzana M., Mavilio F., Miccio A. (2018) Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 131, 1960–1973. https://doi.org/10.1182/blood-2017-10-811505
  4. Pavlovic K., Tristán-Manzano M., Maldonado-Pérez N., Cortijo-Gutierrez M., Sánchez-Hernández S., Justicia-Lirio P., Carmona M.D., Herrera C., Martin F., Benabdellah K. (2020) Using gene editing approaches to fine-tune the immune system. Front. Immunol. 11, 570672. https://doi.org/10.3389/fimmu.2020.570672
  5. Kotagama O.W., Jayasinghe C.D., Abeysinghe T. (2019) Era of genomic medicine: a narrative review on CRISPR technology as a potential therapeutic tool for human diseases. Biomed. Res. Int. 2019, 1369682. https://doi.org/10.1155/2019/1369682
  6. Sun W., Liu H., Yin W., Qiao J., Zhao X., Liu Y. (2022) Strategies for enhancing the homology-directed repair efficiency of CRISPR-Cas systems. CRISPR J. 5, 7–18. https://doi.org/10.1089/crispr.2021.0039
  7. Shams F., Bayat H., Mohammadian O., Mahboudi S., Vahidnezhad H., Soosanabadi M., Rahimpour A. (2022) Advance trends in targeting homology-directed repair for accurate gene editing: an inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts. 12, 371–391. https://doi.org/10.34172/bi.2022.23871
  8. Smirnikhina S.A., Zaynitdinova M.I., Sergeeva V.A., Lavrov A.V. (2022) Improving homology-directed repair in genome editing experiments by influencing the cell cycle. Int. J. Mol. Sci. 23, 5992. https://doi.org/10.3390/ijms23115992
  9. Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344. https://doi.org/10.1038/nbt.3481
  10. Zhang J.P., Li X.L., Li G.H., Chen W., Arakaki C., Botimer G.D., Baylink D., Zhang L., Wen W., Fu Y.W., Xu J., Chun N., Yuan W., Cheng T., Zhang X.B. (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35. https://doi.org/10.1186/S13059-017-1164-8
  11. Ghanta K.S., Chen Z., Mir A., Dokshin G.A., Krishnamurthy P.M., Yoon Y., Gallant J., Xu P., Zhang X.O., Ozturk A.R., Shin M., Idrizi F., Liu P., Gneid H., Edraki A., Lawson N.D., Rivera-Pérez J.A., Sontheimer E.J., Watts J.K., Mello C.C. (2021) 5′-Modifications improve potency and efficacy of DNA donors for precision genome editing. Elife. 10, e72216. https://doi.org/10.7554/eLife.72216
  12. Haraguchi T., Koujin T., Shindo T., Bilir Ş., Osakada H., Nishimura K., Hirano Y., Asakawa H., Mori C., Kobayashi S., Okada Y., Chikashige Y., Fukagawa T., Shibata S., Hiraoka Y. (2022) Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun. Biol. 5, 78. https://doi.org/10.1038/s42003-022-03021-8
  13. Carlson-Stevermer J., Abdeen A.A., Kohlenberg L., Goedland M., Molugu K., Lou M., Saha K. (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8, 1711.https://doi.org/10.1038/s41467-017-01875-9
  14. Ma M., Zhuang F., Hu X., Wang B., Wen X.Z., Ji J.F., Xi J.J. (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res. 27, 578–581. https://doi.org/10.1038/cr.2017.29
  15. Savic N., Ringnalda F.C., Lindsay H., Berk C., Bargsten K., Li Y., Neri D., Robinson M.D., Ciaudo C., Hall J., Jinek M., Schwank G. (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. 7, e33761.https://doi.org/10.7554/eLife.33761
  16. Aird E.J., Lovendahl K.N., St. Martin A., Harris R.S., Gordon W.R. (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 1, 54. https://doi.org/10.1038/s42003-018-0054-2
  17. Nguyen D.N., Roth T.L., Li P.J., Chen P.A., Apathy R., Mamedov M.R., Vo L.T., Tobin V.R., Goodman D., Shifrut E., Bluestone J.A., Puck J.M., Szoka F.C., Marson A. (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49. https://doi.org/10.1038/s41587-019-0325-6
  18. Zhang J.P., Li X.L., Neises A., Chen W., Hu L.P., Ji G.Z., Yu J.Y., Xu.J, Yuan W.P., Cheng T., Zhang X.B. (2016) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci. Rep. 6, 28566. https://doi.org/10.1038/srep28566
  19. Shy B.R., Vykunta V.S., Ha A., Talbot A., Roth T.L., Nguyen D.N., Pfeifer W.G., Chen Y.Y., Blaeschke F., Shifrut E., Vedova S., Mamedov M.R., Chung J.J., Li H., Yu R., Wu D., Wolf J., Martin T.G., Castro C.E., Ye L., Esensten J.H., Eyquem J., Marson A. (2023) High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531. https://doi.org/10.1038/s41587-022-01418-8
  20. Kath J., Du W., Pruene A., Braun T., Thommandru B., Turk R., Sturgeon M.L., Kurgan G.L., Amini L., Stein M., Zittel T., Martini S., Ostendorf L., Wilhelm A., Akyüz L., Rehm A., Höpken U.E., Pruß A., Künkele A., Jacobi A.M., Volk H.D., Schmueck-Henneresse M., Stripecke R., Reinke P., Wagner D.L. (2022) Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol. Ther. Methods Clin. Dev. 25, 311–330. https://doi.org/10.1016/j.omtm.2022.03.018
  21. Oh S.A., Senger K., Madireddi S., Akhmetzyanova I., Ishizuka I.E., Tarighat S., Lo J.H., Shaw D., Haley B., Rutz S. (2022) High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J. Exp. Med. 219, e20211530. https://doi.org/10.1084/jem.20211530
  22. Lin-Shiao E., Pfeifer W.G., Shy B.R., Saffari Doost M., Chen E., Vykunta V.S., Hamilton J.R., Stahl E.C., Lopez D.M., Sandoval Espinoza C.R., Deyanov A.E., Lew R.J., Poirer M.G., Marson A., Castro C.E., Doudna J.A. (2022) CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Res. 50, 1256–1268.https://doi.org/10.1093/nar/gkac049
  23. Maslennikova A., Kruglova N., Kalinichenko S., Komkov D., Shepelev M., Golubev D., Siniavin A., Vzorov A., Filatov A., Mazurov D. (2022) Engineering T-cell resistance to HIV-1 infection via knock-in of peptides from the heptad repeat 2 domain of gp41. mBio. 13, e0358921. https://doi.org/10.1128/mbio.03589-21
  24. Sternberg S.H., Redding S., Jinek M., Greene E.C., Doudna J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507, 62–67. https://doi.org/10.1038/nature13011
  25. Jing R., Jiao P., Chen J., Meng X., Wu X., Duan Y., Shang K., Qian L., Huang Y., Liu J., Huang T., Jin J., Chen W., Zeng X., Yin W., Gao X., Zhou C., Sadelain M., Sun J. (2021) Cas9-cleavage sequences in size-reduced plasmids enhance nonviral genome targeting of CARs in primary human T cells. Small Methods. 5, e2100071.https://doi.org/10.1002/smtd.202100071
  26. Aldag P., Welzel F., Jakob L., Schmidbauer A., Rutkauskas M., Fettes F., Grohmann D., Seidel R. (2021). Probing the stability of the SpCas9–DNA complex after cleavage. Nucleic Acids Res. 49, 12411–12421.https://doi.org/10.1093/nar/gkab1072
  27. Zou R., Liu Y., Ha T. (2021) In vitro cleavage and electrophoretic mobility shift assays for very fast CRISPR. Bio Protoc. 11, e4138. https://doi.org/10.21769/BioProtoc.4138
  28. Liu Y., Zou R.S., He S., Nihongaki Y., Li X., Razavi S., Wu B., Ha T. (2020) Very fast CRISPR on demand. Science. 368, 1265–1269. https://doi.org/10.1126/science.aay8204
  29. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279.https://doi.org/10.1038/NBT.2808

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the donor construct for the MTC34 knockin in exon 2 of the CXCR4 locus (a) and its modifications (b, c). Designations: 5ʹ-HA – 5ʹ-homology arm; P2A – ribosome skipping signal; LS – leader sequence; GPI – sequence for modification of peptide with GPI anchor; pA ​​– polyadenylation signal; 3ʹ-HA – 3ʹ-homology arm. b – Schematic representation of plasmids carrying CTS at the 5ʹ- or 3ʹ-end of donor DNA (before 5ʹ-HA or after 3ʹ-HA, respectively); c – CTS and tCTS sequences. 0MM – there are no noncomplementary bases in the protospacer; 4MM, 6MM and 8MM – at the 5ʹ-end of the protospacer there are 4, 6 or 8 non-complementary bases, respectively. The PAM site is shown in bold, the protospacer is underlined, the non-complementary bases in its composition are underlined with a dotted line. Here: CTS is the Cas9 target sequence corresponding to the protospacer together with the PAM; tCTS is the Cas9 target sequence corresponding to the protospacer with non-complementary bases.

Download (144KB)
3. Fig. 2. Effect of CTS modifications of donor DNA on the level of MTC34 knockin (a), CXCR4 knockout (b) and the knockin/knockout ratio (c) in CEM/R5 cells. The cells were electroporated with pcDNA3.3-hCas9, pKS-gRNA-X4ex2 plasmids and one of the variants of the donor plasmid pKS-don_MT-C34. On day 5, the level of CXCR4 knockout (KO) and MTC34 knockin (KI) was assessed by the expression of the corresponding CXCR4 protein and MT-C34 peptide on the cell surface using flow cytofluorimetry. KI/KO – knockin to knockout ratio; control (‒) – donor plasmid pKS-don_MT-C34 without modifications; (0, 4, 6, 8) MM – number of non-complementary bases in the CTS protospacer. Mean values ​​± standard deviation (SD) and individual results of three independent experiments are shown. *p < 0.01, **p < 0.0001.

Download (249KB)
4. Fig. 3. Cleavage of CTS sites by Cas9 in vitro. Donor plasmids with CTS sites containing 0, 4, 6, or 8 noncomplementary bases, as well as an unmodified donor plasmid (‒CTS) were incubated in vitro with a complex of Cas9 and gRNA against CXCR4 (gRNA-X4) (a) or control (gRNA-Scr) (b), and the level of plasmid cleavage was assessed by electrophoresis in 1% TAE-agarose gel. Legend: r (relaxed) – relaxed form of plasmid, sc (super-coiled) – supercoiled form, d – fragment of ~1,400 bp with the donor sequence flanked by CTS or tCTS sites. Donor plasmids with CTS sites containing 0 (c) or 4 (d) noncomplementary bases were incubated in vitro with increasing amounts of RNP, and the level of plasmid cleavage was assessed by electrophoresis in 1% TAE-agarose gel. RNP/plasmid is the molar ratio of RNP to plasmid DNA. M are DNA length markers: 10,000, 8,000, 6,000, 5,000, 4,000, 3,500, 3,000, 2,500, 2,000, 1,500, 1,000, 750 bp (#SM1163; Thermo Fisher Scientific, USA).

Download (187KB)

Copyright (c) 2024 Russian Academy of Sciences