Increasing the Level of Knock-In of the MT-C34-Encoding Construct into the CXCR4 Locus by Modifying Donor DNA with Cas9 Target Sites
- Authors: Shepelev M.V.1, Komkov D.S.1,2, Golubev D.S.1, Borovikova S.E.3, Mazurov D.V.1,4, Kruglova N.A.1,4
-
Affiliations:
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev
- Institute of Gene Biology, Russian Academy of Sciences
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
- Issue: Vol 58, No 4 (2024)
- Pages: 590–600
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655303
- DOI: https://doi.org/10.31857/S0026898424040058
- EDN: https://elibrary.ru/INCOYT
- ID: 655303
Cite item
Abstract
For successful application of genome editing technology using CRISPR/Cas9 system in clinical practice, it is necessary to achieve high efficiency of knock-in, the insertion of a genetic construct into a given locus in the genome of a target cell. One approach to increasing knock-in efficiency involves modifying donor DNA with the same targets for Cas9 (Cas9 targeting sequence, CTS) that are used for induction of double-strand breaks in the cell genome (the “double-cut donor” method). Another approach is based on introducing truncated targets for Cas9 (truncated CTS, tCTS), including a PAM site and 16 nucleotides proximal to it, into the donor DNA. Presumably, tCTS sites do not induce cleavage of the donor plasmid, but can support its transport into the nucleus by Cas9. However, the exact mechanisms for the increase in knock-in levels with both types of donor DNA modifications are unknown. Here, we evaluated the effect of these modifications on the knock-in efficiency of the MTC34 genetic construct encoding the HIV-1 fusion inhibitor, MT-C34 peptide, into the CXCR4 locus of the CEM/R5 T cell line. When full-length CTS sites were introduced into the donor plasmid DNA, the knock-in level increased twofold, regardless of the number of CTSs or their position relative to the donor sequence. Modifications of donor plasmids with tCTS sites did not affect knock-in levels. It was found that in vitro both types of sites were efficiently cleaved by Cas9. In order to study the mechanism of action of these modifications in detail, it is necessary to evaluate their cleavage in vitro and in vivo.
Full Text

About the authors
M. V. Shepelev
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
D. S. Komkov
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Beer-Sheva, 8410501 Israel
D. S. Golubev
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
S. E. Borovikova
Institute of Gene Biology, Russian Academy of Sciences
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334
D. V. Mazurov
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Minneapolis, 55455 USA
N. A. Kruglova
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences; Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
Author for correspondence.
Email: natalya.a.kruglova@yandex.ru
Russian Federation, Moscow, 119334; Minneapolis, 55455 USA
References
- Doudna J.A. (2020) The promise and challenge of therapeutic genome editing. Nature. 578, 229–236. https://doi.org/10.1038/s41586-020-1978-5
- Jiang F., Doudna J.A. (2017) CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822
- Antoniani C., Meneghini V., Lattanzi A., Felix T., Romano O., Magrin E., Weber L., Pavani G., El Hoss S., Kurita R., Nakamura Y., Cradick T.J., Lundberg A.S., Porteus M., Amendola M., El Nemer W., Cavazzana M., Mavilio F., Miccio A. (2018) Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood. 131, 1960–1973. https://doi.org/10.1182/blood-2017-10-811505
- Pavlovic K., Tristán-Manzano M., Maldonado-Pérez N., Cortijo-Gutierrez M., Sánchez-Hernández S., Justicia-Lirio P., Carmona M.D., Herrera C., Martin F., Benabdellah K. (2020) Using gene editing approaches to fine-tune the immune system. Front. Immunol. 11, 570672. https://doi.org/10.3389/fimmu.2020.570672
- Kotagama O.W., Jayasinghe C.D., Abeysinghe T. (2019) Era of genomic medicine: a narrative review on CRISPR technology as a potential therapeutic tool for human diseases. Biomed. Res. Int. 2019, 1369682. https://doi.org/10.1155/2019/1369682
- Sun W., Liu H., Yin W., Qiao J., Zhao X., Liu Y. (2022) Strategies for enhancing the homology-directed repair efficiency of CRISPR-Cas systems. CRISPR J. 5, 7–18. https://doi.org/10.1089/crispr.2021.0039
- Shams F., Bayat H., Mohammadian O., Mahboudi S., Vahidnezhad H., Soosanabadi M., Rahimpour A. (2022) Advance trends in targeting homology-directed repair for accurate gene editing: an inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts. 12, 371–391. https://doi.org/10.34172/bi.2022.23871
- Smirnikhina S.A., Zaynitdinova M.I., Sergeeva V.A., Lavrov A.V. (2022) Improving homology-directed repair in genome editing experiments by influencing the cell cycle. Int. J. Mol. Sci. 23, 5992. https://doi.org/10.3390/ijms23115992
- Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344. https://doi.org/10.1038/nbt.3481
- Zhang J.P., Li X.L., Li G.H., Chen W., Arakaki C., Botimer G.D., Baylink D., Zhang L., Wen W., Fu Y.W., Xu J., Chun N., Yuan W., Cheng T., Zhang X.B. (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35. https://doi.org/10.1186/S13059-017-1164-8
- Ghanta K.S., Chen Z., Mir A., Dokshin G.A., Krishnamurthy P.M., Yoon Y., Gallant J., Xu P., Zhang X.O., Ozturk A.R., Shin M., Idrizi F., Liu P., Gneid H., Edraki A., Lawson N.D., Rivera-Pérez J.A., Sontheimer E.J., Watts J.K., Mello C.C. (2021) 5′-Modifications improve potency and efficacy of DNA donors for precision genome editing. Elife. 10, e72216. https://doi.org/10.7554/eLife.72216
- Haraguchi T., Koujin T., Shindo T., Bilir Ş., Osakada H., Nishimura K., Hirano Y., Asakawa H., Mori C., Kobayashi S., Okada Y., Chikashige Y., Fukagawa T., Shibata S., Hiraoka Y. (2022) Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun. Biol. 5, 78. https://doi.org/10.1038/s42003-022-03021-8
- Carlson-Stevermer J., Abdeen A.A., Kohlenberg L., Goedland M., Molugu K., Lou M., Saha K. (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8, 1711.https://doi.org/10.1038/s41467-017-01875-9
- Ma M., Zhuang F., Hu X., Wang B., Wen X.Z., Ji J.F., Xi J.J. (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res. 27, 578–581. https://doi.org/10.1038/cr.2017.29
- Savic N., Ringnalda F.C., Lindsay H., Berk C., Bargsten K., Li Y., Neri D., Robinson M.D., Ciaudo C., Hall J., Jinek M., Schwank G. (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. 7, e33761.https://doi.org/10.7554/eLife.33761
- Aird E.J., Lovendahl K.N., St. Martin A., Harris R.S., Gordon W.R. (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun. Biol. 1, 54. https://doi.org/10.1038/s42003-018-0054-2
- Nguyen D.N., Roth T.L., Li P.J., Chen P.A., Apathy R., Mamedov M.R., Vo L.T., Tobin V.R., Goodman D., Shifrut E., Bluestone J.A., Puck J.M., Szoka F.C., Marson A. (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49. https://doi.org/10.1038/s41587-019-0325-6
- Zhang J.P., Li X.L., Neises A., Chen W., Hu L.P., Ji G.Z., Yu J.Y., Xu.J, Yuan W.P., Cheng T., Zhang X.B. (2016) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci. Rep. 6, 28566. https://doi.org/10.1038/srep28566
- Shy B.R., Vykunta V.S., Ha A., Talbot A., Roth T.L., Nguyen D.N., Pfeifer W.G., Chen Y.Y., Blaeschke F., Shifrut E., Vedova S., Mamedov M.R., Chung J.J., Li H., Yu R., Wu D., Wolf J., Martin T.G., Castro C.E., Ye L., Esensten J.H., Eyquem J., Marson A. (2023) High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531. https://doi.org/10.1038/s41587-022-01418-8
- Kath J., Du W., Pruene A., Braun T., Thommandru B., Turk R., Sturgeon M.L., Kurgan G.L., Amini L., Stein M., Zittel T., Martini S., Ostendorf L., Wilhelm A., Akyüz L., Rehm A., Höpken U.E., Pruß A., Künkele A., Jacobi A.M., Volk H.D., Schmueck-Henneresse M., Stripecke R., Reinke P., Wagner D.L. (2022) Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells. Mol. Ther. Methods Clin. Dev. 25, 311–330. https://doi.org/10.1016/j.omtm.2022.03.018
- Oh S.A., Senger K., Madireddi S., Akhmetzyanova I., Ishizuka I.E., Tarighat S., Lo J.H., Shaw D., Haley B., Rutz S. (2022) High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J. Exp. Med. 219, e20211530. https://doi.org/10.1084/jem.20211530
- Lin-Shiao E., Pfeifer W.G., Shy B.R., Saffari Doost M., Chen E., Vykunta V.S., Hamilton J.R., Stahl E.C., Lopez D.M., Sandoval Espinoza C.R., Deyanov A.E., Lew R.J., Poirer M.G., Marson A., Castro C.E., Doudna J.A. (2022) CRISPR-Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells. Nucleic Acids Res. 50, 1256–1268.https://doi.org/10.1093/nar/gkac049
- Maslennikova A., Kruglova N., Kalinichenko S., Komkov D., Shepelev M., Golubev D., Siniavin A., Vzorov A., Filatov A., Mazurov D. (2022) Engineering T-cell resistance to HIV-1 infection via knock-in of peptides from the heptad repeat 2 domain of gp41. mBio. 13, e0358921. https://doi.org/10.1128/mbio.03589-21
- Sternberg S.H., Redding S., Jinek M., Greene E.C., Doudna J.A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 507, 62–67. https://doi.org/10.1038/nature13011
- Jing R., Jiao P., Chen J., Meng X., Wu X., Duan Y., Shang K., Qian L., Huang Y., Liu J., Huang T., Jin J., Chen W., Zeng X., Yin W., Gao X., Zhou C., Sadelain M., Sun J. (2021) Cas9-cleavage sequences in size-reduced plasmids enhance nonviral genome targeting of CARs in primary human T cells. Small Methods. 5, e2100071.https://doi.org/10.1002/smtd.202100071
- Aldag P., Welzel F., Jakob L., Schmidbauer A., Rutkauskas M., Fettes F., Grohmann D., Seidel R. (2021). Probing the stability of the SpCas9–DNA complex after cleavage. Nucleic Acids Res. 49, 12411–12421.https://doi.org/10.1093/nar/gkab1072
- Zou R., Liu Y., Ha T. (2021) In vitro cleavage and electrophoretic mobility shift assays for very fast CRISPR. Bio Protoc. 11, e4138. https://doi.org/10.21769/BioProtoc.4138
- Liu Y., Zou R.S., He S., Nihongaki Y., Li X., Razavi S., Wu B., Ha T. (2020) Very fast CRISPR on demand. Science. 368, 1265–1269. https://doi.org/10.1126/science.aay8204
- Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279.https://doi.org/10.1038/NBT.2808
Supplementary files
