Metabolic Profile of Gut Microbiota and Levels of Trefoil Factors in Adults with Different Metabolic Phenotypes of Obesity
- Authors: Kolesnikova I.M.1,2, Ganenko L.A.3, Vasilyev I.Y.4, Grigoryeva T.V.4, Volkova N.I.3, Roumiantsev S.A.1,2,5, Shestopalov A.V.1,2,5,6
-
Affiliations:
- N.I. Pirogov Russian National Research Medical University
- The National Medical Research Center for Endocrinology
- Rostov State Medical University
- Kazan (Volga region) Federal University
- Center for Molecular Health
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- Issue: Vol 58, No 4 (2024)
- Pages: 638–654
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655309
- DOI: https://doi.org/10.31857/S0026898424040105
- EDN: https://elibrary.ru/IMMUOM
- ID: 655309
Cite item
Abstract
Obesity is associated with changes in the gut microbiota, as well as increased permeability of the intestinal wall. In 130 non-obese volunteers, 57 patients with metabolically healthy obesity (MHO), and 76 patients with metabolically unhealthy obesity (MUHO), bacterial DNA was isolated from stool samples, and the 16S rRNA gene was sequenced. The metabolic profile of the microbiota predicted by PICRUSt2 (https://huttenhower.sph.harvard.edu/picrust/) was more altered in patients with MUHO than MHO. Obesity, especially MUHO, was accompanied by an increase in the ability of the gut microbiota to degrade energy substrates, produce energy through oxidative phosphorylation, synthesize water-soluble vitamins (B1, B6, B7), nucleotides, heme, aromatic amino acids, and protective structural components of cells. Such changes may be a consequence of the microbiota adaptation to the MUHO-specific conditions. Thus, a vicious circle is formed, when MUHO promotes the depletion of gut microbiome, and further degeneration of the latter contributes to the pathogenesis of metabolic disorders. The concentration of the trefoil factor family (TFF) in the serum of the participants was also determined. In MHO and MUHO patients, TFF2 and TFF3 levels were increased, but we did not find significant associations of these changes with the metabolic profile of the gut microbiota.
Full Text

About the authors
I. M. Kolesnikova
N.I. Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology
Author for correspondence.
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Moscow, 117997; Moscow, 117292
L. A. Ganenko
Rostov State Medical University
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Rostov-on-Don, 344002
I. Yu. Vasilyev
Kazan (Volga region) Federal University
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Kazan, 420008
T. V. Grigoryeva
Kazan (Volga region) Federal University
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Kazan, 420008
N. I. Volkova
Rostov State Medical University
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Rostov-on-Don, 344002
S. A. Roumiantsev
N.I. Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology; Center for Molecular Health
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Moscow, 117997; Moscow, 117292; Moscow, 117437
A. V. Shestopalov
N.I. Pirogov Russian National Research Medical University; The National Medical Research Center for Endocrinology; Center for Molecular Health; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
Email: ir.max.kolesnikova@gmail.com
Russian Federation, Moscow, 117997; Moscow, 117292; Moscow, 117437; Moscow, 117997
References
- Cheng Z., Zhang L., Yang L., Chu H. (2022) The critical role of gut microbiota in obesity. Front. Endocrinol. (Lausanne). 13, 1025706. https://doi.org/10.3389/FENDO.2022.1025706
- Van Hul M., Cani P.D. (2023) The gut microbiota in obesity and weight management: microbes as friends or foe? Nat. Rev. Endocrinol. 19(5), 258–271. https://doi.org/10.1038/s41574-022-00794-0
- Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. (2020) PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. https://doi.org/10.1038/s41587-020-0548-6
- Hu J., Guo P., Mao R., Ren Z., Wen J., Yang Q., Yu J., Zhang T., Liu Y., Yan T. (2022) Gut microbiota signature of obese adults across different classifications. Diabetes Metab. Syndr. Obes. 15, 3933–3947. https://doi.org/10.2147/dmso.S387523
- Kim M.H., Yun K.E., Kim J., Park E., Chang Y., Ryu S., Kim H.L., Kim H.N. (2020) Gut microbiota and metabolic health among overweight and obese individuals. Sci. Rep. 10(1), 19417. https://doi.org/10.1038/S41598-020-76474-8
- Duan M., Wang Y., Zhang Q., Zou R., Guo M., Zheng H. (2021) Characteristics of gut microbiota in people with obesity. PLoS One. 16(8), e0255446. https://doi.org/10.1371/journal.pone.0255446
- Takiishi T., Fenero C.I.M., Câmara N.O.S. (2017) Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 5(4), e1373208. https://doi.org/10.1080/21688370.2017.1373208
- Portincasa P., Bonfrate L., Khalil M., De Angelis M., Calabrese F.M., D’amato M., Wang D.Q-H., Di Ciaula A. (2022) Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines. 10(1), 83. https://doi.org/10.3390/biomedicines10010083
- Braga Emidio N., Hoffmann W., Brierley S.M., Muttenthaler M. (2019) Trefoil factor family: unresolved questions and clinical perspectives. Trends Biochem. Sci. 44(5), 387–390. https://doi.org/10.1016/j.tibs.2019.01.004
- Kjellev S. (2009) The trefoil factor family — small peptides with multiple functionalities. Cell. Mol. Life Sci. 66(8), 1350–1369. https://doi.org/10.1007/S00018-008-8646-5
- Madsen J., Nielsen O., Tornøe I., Thim L., Holmskov U. (2007) Tissue localization of human trefoil factors 1, 2, and 3. J. Histochem. Cytochem. 55(5), 505–513. https://doi.org/10.1369/JHC.6A7100.2007
- Шестопалов А.В., Дворников А.С., Борисенко О.В., Тутельян А.В. (2019) Трефоиловые факторы ‒ новые маркеры мукозального барьера желудочно-кишечного тракта. Инфекция и иммунитет. 9(1), 39‒46. doi: 10.15789/2220-7619-2019-1-39-46
- Kurt-Jones E.A., Cao L.C., Sandor F., Rogers A.B., Whary M.T., Nambiar P.R., Cerny A., Bowen G., Yan J., Takaishi S., Chi A.L., Reed G., Houghton J.M., Fox J.G., Wang T.C. (2007) Trefoil family factor 2 is expressed in murine gastric and immune cells and controls both gastrointestinal inflammation and systemic immune responses. Infect. Immun. 75(1), 471–480. https://doi.org/10.1128/IAI.02039-05
- Iacobini C., Pugliese G., Blasetti Fantauzzi C., Federici M., Menini S. (2019) Metabolically healthy versus metabolically unhealthy obesity. Metabolism. 92, 51–60. https://doi.org/10.1016/j.metabol.2018.11.009
- Шестопалов А.В., Колесникова И.М., Гапонов А.М., Григорьева Т.В., Хуснутдинова Д.Р., Камальдинова Д.Р., Волкова Н.И., Макаров В.В., Юдин С.М., Румянцев А.Г., Румянцев С.А. (2022) Влияние метаболического типа ожирения на микробиом крови. Вопросы биологической, медицинской и фармацевтической химии. 25(2), 35–41.
- Колесникова И.М., Карбышев М.С., Гапонов A.M., Хуснутдинова Д.Р., Григорьева Т.В., Камальдинова Д.Р., Борисенко О.В., Макаров В.В., Юдин С.М., Румянцев С.А., Шестопалов А.В. (2023) Особенности таксономической принадлежности бактериальной ДНК крови у пациентов с различными метаболическими фенотипами ожирения. Бюллетень сибирской медицины. 22(2), 61‒67. https://doi.org/10.20538/1682-0363-2023-2-61-67
- Expert panel on detection evaluation and treatment of high blood cholesterol in adults. (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 285(19), 2486–2497. https://doi.org/10.1001/jama.285.19.2486
- Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodríguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J., Hillmann B., Holmes S., Hlste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L., Kaehler B.D., Kang K. Bin., Keefe C.R., Keim P., Kelley S.T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S., Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., van der Hooft J.J.J., Vargas F., Vázquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y., Wang M., Warren J., Weber K.C., Williamson C.H.D, Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y., Zhu Q., Knight R., Caporaso J.G. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat. Biotechnol. 37(8), 852–857. https://doi.org/10.1038/S41587-019-0209-9
- Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue), D590–D596. https://doi.org/10.1093/nar/gks1219
- Ghanemi A., Yoshioka M., St-Amand J. (2021) Trefoil factor family member 2: from a high-fat-induced gene to a potential obesity therapy target. Metabolites. 11(8), 536. https://doi.org/10.3390/metabo11080536
- Ghanemi A., Yoshioka M., St-Amand J. (2021) Trefoil factor family member 2 expression as an indicator of the severity of the high-fat diet-induced obesity. Genes (Basel). 12(10), 1505. https://doi.org/10.3390/genes12101505
- Shestopalov A.V., Kolesnikova I.M., Savchuk D.V., Teplyakova E.D., Shin V.A., Grigoryeva T.V., Naboka Yu.L., Gaponov A.M., Roumiantsev S.A. (2023) Effect of the infant feeding type on gut microbiome taxonomy and levels of trefoil factors in children and adolescents. J. Evol. Biochem. Physiol. 59, 877–890. https://doi.org/10.1134/S0022093023030201
- Коваленко Т.В., Ларионова М.А. (2019) Трекинг ожирения в детском возрасте. Педиатрия. 98, 128–135. https://doi.org/10.24110/0031-403X-2019-98-4-128-135
- Wan Y., Yuan J., Li J., Li H., Yin K., Wang F., Li D. (2020) Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic acid cycle intermediates. Clin. Nutr. 39(10), 3189–3198. https://doi.org/10.1016/j.clnu.2020.02.014
- Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L. (2014) The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119.
- https://doi.org/10.1016/B978-0-12-800100-4.00003-9
- Brahe L.K., Astrup A., Larsen L.H. (2013) Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14(12), 950–959. https://doi.org/10.1111/OBR.12068
- Amabebe E., Robert F.O., Agbalalah T., Orubu E.S.F. (2020) Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br.J. Nutr. 123(10), 1127–1137. https://doi.org/10.1017/S0007114520000380
- Yang J., Keshavarzian A., Rose D.J. (2013) Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals. J. Med. Food. 16(9), 862–867. https://doi.org/10.1089/JMF.2012.0292
- Martínez-Cuesta M.C., del Campo R., Garriga-García M., Peláez C., Requena T. (2021) Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Front. Cell Infect. Microbiol. 11, 598093. https://doi.org/10.3389/FCIMB.2021.598093
- Krolenko E.V., Kupriyanova O.V., Nigmatullina L.S., Grigoryeva T.V., Roumiantsev S.A., Shestopalov A.V. (2024) Changes of the concentration of short-chain fatty acids in the intestines of mice with different types of obesity. Bull. Exp. Biol. Med. 176(3), 347‒353. doi: 10.1007/s10517-024-06022-1
- Thomas-Valdés S., Tostes M. das G.V., Anunciação P.C., da Silva B.P., Sant’Ana H.M.P. (2017) Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 57(15), 3332–3343. https://doi.org/10.1080/10408398.2015.1117413
- Walther B., Philip Karl J., Booth S.L., Boyaval P. (2013) Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv. Nutr. 4(4), 463–473. https://doi.org/10.3945/AN.113.003855
- Aussel L., Pierrel F., Loiseau L., Lombard M., Fontecave M., Barras F. (2014) Biosynthesis and physiology of coenzyme Q in bacteria. Biochim. Biophys. Acta. 1837(7), 1004–1011. https://doi.org/10.1016/j.bbabio.2014.01.015
- Nowrouzi B., Li R.A., Walls L.E., d’Espaux L., Malcı K., Liang L., Jonguitud-Borrego N., Lerma-Escalera A.I., Morones-Ramirez J.R., Keasling J.D., Rios-Solis L. (2020) Enhanced production of taxadiene in Saccharomyces cerevisiae. Microb. Cell Fact. 19(1), 200. https://doi.org/10.1186/S12934-020-01458-2
- Goncheva M.I., Chin D., Heinrichs D.E. (2022) Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends Microbiol. 30(8), 793–804. https://doi.org/10.1016/J.TIM.2021.12.007
- Ding T., Xu M., Li Y. (2022) An overlooked prebiotic: beneficial effect of dietary nucleotide supplementation on gut microbiota and metabolites in senescence-accelerated Mouse prone-8 mice. Front. Nutr. 9, 820799. https://doi.org/10.3389/fnut.2022.820799
- Гапонов А.М., Волкова Н.И., Ганенко Л.А., Набока Ю.Л., Маркелова М.И., Синягина М.Н., Харченко А.М., Хуснутдинова Д.Р., Румянцев С.А., Тутельян А.В., Макаров В.В., Юдин С.М., Шестопалов А.В. (2021) Особенности микробиома толстой кишки у пациентов с ожирением при его различных фенотипах (оригинальная статья). Журн. Микробиол. Эпидемиол. Иммунобиологии. 98(2), 144‒155. doi: 10.36233/0372-9311-66
- Kesh K., Mendez R., Mateo-Victoriano B., Garrido V.T., Durden B., Gupta V.K., Oliveras Reyes A., Merchant N., Datta J., Banerjee S., Banerjee S. (2022) Obesity enriches for tumor protective microbial metabolites and treatment refractory cells to confer therapy resistance in PDAC. Gut Microbes. 14(1), 2096328. https://doi.org/10.1080/19490976.2022.2096328
- Wang X., Matuszek Z., Huang Y., Parisien M., Dai Q., Clark W., Schwartz M.H., Pan T. (2018) Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA. 24(10), 1305–1313. https://doi.org/10.1261/RNA.067033.118/-/DC1
- Tuorto F., Legrand C., Cirzi C., Federico G., Liebers R., Müller M., Ehrenhofer‐Murray A.E., Dittmar G., Gröne H., Lyko F. (2018) Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 37(18), e99777. https://doi.org/10.15252/EMBJ.201899777
- Nie X., Chen J., Ma X., Ni Y., Shen Y., Yu H., Panagiotou G., Bao Y. (2020) A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput. Struct. Biotechnol. J. 18, 2596–2609.https://doi.org/10.1016/J.CSBJ.2020.09.026
- Gaca A.O., Kajfasz J.K., Miller J.H., Liu K., Wang J.D., Abranches J., Lemos J.A. (2013) Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio. 4(5), e00646–13. https://doi.org/10.1128/MBIO.00646-13
- Siptroth J., Moskalenko O., Krumbiegel C., Ackermann J., Koch I., Pospisil H. (2023) Investigation of metabolic pathways from gut microbiome analyses regarding type 2 diabetes mellitus using artificial neural networks. Discov. Artif. Intell. 3, 19. https://doi.org/10.1007/S44163-023-00064-6
- Tosar J.P., Cayota A. (2020) Extracellular tRNAs and tRNA-derived fragments. RNA Biol. 17(8), 1149–1167. https://doi.org/10.1080/15476286.2020.1729584
- Gutiérrez-Repiso C., Molina-Vega M., Bernal-López M.R., Garrido-Sánchez L., García-Almeida J.M., Sajoux I., Moreno-Indias I., Tinahones F.J. (2021) Different weight loss intervention approaches reveal a lack of a common pattern of gut microbiota changes. J. Pers. Med. 11(2), 109. https://doi.org/10.3390/JPM11020109
- Constante M., Fragoso G., Calvé A., Samba-Mondonga M., Santos M.M. (2017) Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front. Microbiol. 8, 1809. https://doi.org/10.3389/FMICB.2017.01809
- Ijssennagger N., Belzer C., Hooiveld G.J., Dekker J., Van Mil S.W.C., Müller M., Kleerebezem M., Van Der Meer R., Klaenhammer T.R. (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA. 112(32), 10038–10043. https://doi.org/10.1073/PNAS.1507645112
- Fernández Á.F., Bárcena C., Martínez-García G.G., Tamargo-Gómez I., Suárez M.F., Pietrocola F., Castoldi F., Esteban L., Sierra-Filardi E., Boya P., López-Otín C., Kroemer G., Mariño G. (2017) Autophagy couteracts weight gain, lipotoxicity and pancreatic β-cell death upon hypercaloric pro-diabetic regimens. Cell Death Dis. 8(8), e2970. https://doi.org/10.1038/CDDIS.2017.373
- Ramos-Molina B., Queipo-Ortuño M.I., Lambertos A., Tinahones F.J., Peñafiel R. (2019) Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front. Nutr. 6, 24. https://doi.org/10.3389/FNUT.2019.00024
- Liu R., Hong J., Xu X., Feng Q., Zhang D., Gu Y., Shi J., Zhao S., Liu W., Wang X., Xia H., Liu Z., Cui B., Liang P., Xi L., Jin J., Ying X., Wang X., Zhao X., Li W., Jia H., Lan Z., Li F., Wang R., Sun Y., Yang M., Shen Y., Jie Z., Li J., Chen X., Zhong H., Xie H., Zhang Y., Gu W., Deng X., Shen B., Xu X., Yang H., Xu G., Bi Y., Lai S., Wang J., Qi L., Madsen L., Wang J., Ning G., Kristiansen K., Wang W. (2017) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23(7), 859–868. https://doi.org/10.1038/NM.4358
- Шатова О.П., Гапонов А.М., Григорьева Т.В., Васильев И.Ю., Столетова Л.С., Макаров В.В., Юдин С.М., Румянцев С.А., Шестопалов А.В. (2023) Катаболиты триптофана и гены ферментов микробиома кишечника. Вестник РГМУ. 4, 41–59. doi: 10.24075/vrgmu.2023.027
- Yu D., Yang Y., Long J., Xu W., Cai Q., Wu J., Cai H., Zheng W., Shu X.O. (2021) Long-term diet quality and gut microbiome functionality: a prospective, shotgun metagenomic study among urban Chinese adults. Curr. Dev. Nutr. 5(4), nzab026. https://doi.org/10.1093/CDN/NZAB026
- Fabietti F., Delise M., Piccioli Bocca A. (2001) Investigation into the benzene and toluene content of soft drinks. Food Control. 12(8), 505–509. https://doi.org/10.1016/S0956-7135(01)00041-X
- Srain B.M., Pantoja-Gutiérrez S. (2022) Microbial production of toluene in oxygen minimum zone waters in the Humboldt Current System off Chile. Sci. Rep. 12(1), 10669. https://doi.org/10.1038/s41598-022-14103-2
- Synowiec A., Żyła K., Gniewosz M., Kieliszek M. (2021) An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. Open Life Sci. 16(1), 594–601. https://doi.org/10.1515/biol-2021-0060
- Javaheri-Ghezeldizaj F., Alizadeh A.M., Dehghan P., Ezzati Nazhad Dolatabadi J. (2023) Pharmacokinetic and toxicological overview of propyl gallate food additive. Food Chem. 423, 135219. https://doi.org/10.1016/J.FOODCHEM.2022.135219
- Guo J., Han X., Zhan J., You Y., Huang W. (2018) Vanillin alleviates high fat diet-induced obesity and improves the gut microbiota composition. Front. Microbiol. 9, 2733. https://doi.org/10.3389/FMICB.2018.02733
- Шестопалов А.В., Колесникова И.М., Савчук Д.В., Гапонов А.М., Теплякова Е.Д., Григорьева Т.В., Васильев И.Ю., Румянцев А.Г., Борисенко О.В., Румянцев С.А. (2023) Влияние типа вскармливания на первом году жизни на метаболические профили микробного сообщества кишечника детей и подростков с ожирением и нормальной массой тела, проживающих в Ростовской области. Педиатрия им. Г.Н. Сперанского. 102(5), 90‒102. doi: 10.24110/0031-403X-2023-102-5-90-102
- Hersoug L.G., Møller P., Loft S. (2018) Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 31(2), 153–163. https://doi.org/10.1017/S0954422417000269
- Bertani B., Ruiz N. (2018) Function and biogenesis of lipopolysaccharides. EcoSal Plus. 8(1), 10.1128/ecosalplus.ESP-0001-2018. https://doi.org/10.1128/ECOSALPLUS.ESP-0001-2018
- Pazos M., Peters K. (2019) Peptidoglycan. Subcell. Biochem. 92, 127–168. https://doi.org/10.1007/978-3-030-18768-2_5
- Колесникова И.М., Гапонов А.М., Румянцев С.А., Ганенко Л.А., Волкова Н.И., Григорьева Т.В., Лайков А.В., Макаров В.В., Юдин С.М., Шестопалов А.В. (2022) Взаимосвязь содержания нейротрофинов и кишечного микробиома при различных метаболических типах ожирения. Журнал эволюционной биохимии и физиологии. 58(4), 43–56. https://doi.org/10.31857/S0044452922040076
Supplementary files
