Structure and evolution of DNA transposons of the L31 superfamily of bivalves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

DNA transposons of the IS630/Tc1/mariner (ITm) are widespread representatives of DNA transposons that make a significant contribution to the evolution of eukaryotic genomes. With the start of large-scale application of next generation sequencing (NGS) technologies and the emergence of many new whole genome sequences of organisms in nucleotide collections, ITm elements have been identified in most taxa of the eukaryotic tree of life. Despite the rather detailed study of the diversity of ITm representatives, elements are still found that contribute to the expansion and revision of the classification of this group of DNA transposons. This paper presents for the first time a detailed analysis of the L31 elements of bivalves, which resulted in a description of the structure, diversity, distribution, and phylogenetic position among the ITm elements. It was found that L31 transposons are an independent superfamily in the ITm group, which has an ancient origin. Within the L31 clade, rather high diversity was observed: five phylogenetic clusters were identified. At the moment, the presence of L31 transposons in molluscs has been revealed only in bivalves in the subclass Autobranchia, with a predominance in diversity and quantity in the infraclass Pteriomorphia. It has also been shown that the protein encoded by the second open reading frame (ORF2) is an integral structural component of almost all full-length L31 elements. The data obtained contribute to a better understanding of the evolution of representatives of ITm transposons. Further study of L31 transposons in other taxa (cnidaria), as well as the study of the function of the second ORF protein, will provide an opportunity to better understand the evolution of DNA transposons, the mechanisms of horizontal transfer, and the contribution to eukaryotic biodiversity.

Full Text

Restricted Access

About the authors

M. V. Puzakov

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Author for correspondence.
Email: puzakov@ngs.ru
Russian Federation, Sevastopol, 299011

L. V. Puzakova

Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences

Email: puzakov@ngs.ru
Russian Federation, Sevastopol, 299011

References

  1. Arkhipova I.R., Yushenova I.A. (2019) Giant transposons in eukaryotes: is bigger better? Genome Biol. Evol. 11, 906–918. doi: 10.1093/gbe/evz041
  2. Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. (2018) Ten things you should know about transposable elements. Genome Biol. 19, 199. doi: 10.1186/s13059-018-1577-z
  3. Kidwell M.G., Lisch D.R. (2000) Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99. doi: 10.1016/s0169-5347(99)01817-0
  4. Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. (2017) Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177. doi: 10.1093/gbe/evw264
  5. Gao B., Shen D., Xue S. Chen C., Cui H., Song C. (2016) The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. 7, 4. doi: 10.1186/s13100-016-0059-7
  6. Petrov D.A. (2001) Evolution of genome size: new approaches to an old problem. Trends Genet. 17, 23–28. doi: 10.1016/s0168-9525(00)02157-0
  7. Юрченко Н.Н., Коваленко Л.В., Захаров И.К. (2011) Мобильные генетические элементы: нестабильность генов и геномов. Вавил. журн. генетики и селекции. 15, 261–270.
  8. Grabundzija I., Messing S.A., Thomas J. Cosby R.L., Bilic I., Miskey C., Gogol-Döring A., Kapitonov V., Diem T., Dalda A., Jurka J., Pritham E.J., Dyda F., Izsvák Z., Ivics Z. (2016) A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 7, 10716. doi: 10.1038/ncomms10716
  9. Craig N.L., Chandler M., Gellert M., Lambowitz A., Rice P.A., Sandmeyer S. (2015) Mobile DNA III. Washington, USA: ASM Press.
  10. Sultana T., Zamborlini A., Cristofari G., Lesage P. (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308. doi: 10.1038/nrg.2017.7
  11. Blumenstiel J.P. (2019) Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel). 10, 336. doi: 10.3390/genes10050336
  12. Bowen N.J., Jordan I.K. (2007) Exaptation of protein coding sequences from transposable elements. Genome Dyn. 3, 147–162.
  13. Venner S., Feschotte C., Biémont C. (2009) Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet. 25, 317–323.
  14. Boissinot S., Chevret P., Furano A.V. (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928. doi: 10.1093/oxfordjournals.molbev.a026372
  15. Platt R.N. 2nd, Vandewege M.W., Ray D.A. (2018) Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 26, 25–43. doi: 10.1007/s10577-017-9570-z
  16. Sinzelle L., Izsvák Z., Ivics Z. (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell. Mol. Life Sci. 66, 1073–1093. doi: 10.1007/s00018-009-8376-3
  17. Chow K.C., Tung W.L. (2000) Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270, 745–748. doi: 10.1006/bbrc.2000.2496
  18. Бубенщикова Е.В., Антоненко О.В., Васильева Л.А., Ратнер В.А. (2002) Индукция транспозиций МГЭ 412 раздельно тепловым и холодовым шоком в сперматогенезе у самцов дрозофилы. Генетика. 38, 46–55.
  19. Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. (2003) Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42, 113–118. doi: 10.1007/s00411-003-0192-9
  20. Захаренко Л.П., Коваленко Л.В., Перепелкина М.П., Захаров И.К. (2006) Влияние γ-радиации на индукцию транспозиций hobo-элемента у Drosophila melanogaster. Генетика. 42, 763–767.
  21. Васильева Л.А., Выхристюк О.В., Антоненко О.В., Захаров И.К. (2007) Индукция транспозиций мобильных генетических элементов в геноме Drosophila melanogaster различными стрессовыми факторами. Информацион. Вестн. ВОГиС. 11, 662–671.
  22. Чересиз С.В., Юрченко Н.Н., Иванников А.В., Захаров И.К. (2008) Мобильные элементы и стресс. Информацион. Вестн. ВОГиС. 12, 217–242.
  23. Piacentini L., Fanti L., Specchia V., Bozzetti M.P., Berloco M., Palumbo G., Pimpinelli S. (2014) Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 123, 345–354. doi: 10.1007/s00412-014-0464-y
  24. Auvinet J., Graça P., Belkadi L., Petit L., Bonnivard E., Dettaï A., Detrich W.H. 3rd, Ozouf-Costaz C., Higuet D. (2018) Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics. 19, 339. doi: 10.1186/s12864-018-4714-x
  25. Kojima K.K. (2020) Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94, 233–252. doi: 10.1266/ggs.18-00024
  26. Kapitonov V.V., Jurka J. (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9, 411–412. doi: 10.1038/nrg2165-c1
  27. Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982. doi: 10.1038/nrg2165
  28. Yuan Y.W., Wessler S.R. (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl. Acad. Sci. USA. 108, 7884–7889. doi: 10.1073/pnas.110420810829
  29. Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. (2021) Prokaryotic and eukaryotic horizontal transfer of Sailor (dd82e), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. doi: 10.3390/biology10101005
  30. Dupeyron M., Baril T., Bass C., Hayward A. (2020) Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. doi: 10.1186/s13100-020-00212-0
  31. Shao H.G., Tu Z.J. (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159, 1103–1115. doi: 10.1093/genetics/159.3.1103
  32. Tellier M., Bouuaert C.C., Chalmers R. (2015) Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3, MDNA3-0033-2014. doi: 10.1128/microbiolspec.MDNA3-0033-2014
  33. Gao B., Wang Y.L., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. (2020) Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25.
  34. Coy M.R., Tu Z.J. (2010) Gambol and Tc1 are two distinct families of DD34E transposons: analysis of the Anopheles gambiae genome expands the diversity of the IS630-Tc1-mariner superfamily. Insect Mol. Biol. 14, 537–546. doi: 10.1111/j.1365-2583.2005.00584.x
  35. Puzakov M.V., Puzakova L.V., Cheresiz S.V. (2018) An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86, 566–580. doi: 10.1007/s00239-018-9868-2
  36. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402. doi: 10.1093/nar/25.17.3389
  37. Yamada K.D., Tomii K., Katoh K. (2016) Application of the MAFFT sequence alignment program to large data – reexamination of the usefulness of chained guide trees. Bioinformatics. 32, 3246–3251. doi: 10.1093/bioinformatics/btw4122016
  38. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268‒274. doi: 10.1093/molbev/msu30039
  39. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. doi: 10.1093/molbev/msx281
  40. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589. doi: 10.1038/nmeth.4285
  41. Zhang H.H., Li G.Y., Xiong X.M., Han M.J., Zhang X.G., Dai F.Y. (2016) TRT, a vertebrate and protozoan Tc1-like transposon: current activity and horizontal transfer. Genome Biol. Evol. 8, 2994–3005. doi: 10.1093/gbe/evw213
  42. Sang Y., Gao B., Diaby M., Zong W., Chen C., Shen D., Wang S., Wang Y., Ivics Z., Song C. (2019) Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mob. DNA. 10, 45. doi: 10.1186/s13100-019-0188-x
  43. Zong W., Gao B., Diaby M., Shen D., Wang S., Wang Y., Sang Y., Chen C., Wang X., Song C. (2020) Traveler, a new DD35E family of Tc1/mariner transposons, invaded vertebrates very recently. Genome Biol. Evol. 12, 66–76. doi: 10.1093/gbe/evaa034
  44. Gao B., Zong W., Miskey C., Ullah N., Diaby M., Chen C., Wang X., Ivics Z., Song C. (2020) Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mob. DNA. 11, 32. doi: 10.1186/s13100-020-00227-7
  45. Puzakov M.V., Puzakova L.V., Cheresiz S.V. (2020) The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol. Genet. Genomics. 295, 621–633. doi: 10.1007/s00438-020-01645-1
  46. Shen D., Gao B., Miskey C., Chen C., Sang Y., Zong W., Wang S., Wang Y., Wang X., Ivics Z., Song C. (2020) Multiple Invasions of Visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates. Genome Biol. Evol. 12, 1060–1073. doi: 10.1093/gbe/evaa135
  47. Пузаков М.В., Пузакова Л.В. (2022) Распространенность, разнообразие и эволюция ДНК-транспозонов L18 (DD37E) в геномах стрекающих (Cnidaria). Молекуляр. биология. 56, 476–490. doi: 10.31857/S0026898422030120
  48. Wang S., Diaby M., Puzakov M., Ullah N., Wang Y., Danley P., Chen C., Wang X., Gao B., Song C. (2021) Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol. Phylogenet. Evol. 161, 107143. doi: 10.1016/j.ympev.2021.10714349
  49. Puzakov M.V., Puzakova L.V., Cheresiz S.V., Sang Y. (2021) The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol. Phylogenet. Evol. 163, 107231. doi: 10.1016/j.ympev.2021.107231
  50. Buchan D.W.A., Jones D.T. (2019) The PSIPRED protein analysis workbench: 20 years on. Nucl. Acids Res. 47, 402–407. doi: 10.1093/nar/gkz297
  51. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. (2004) WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190. doi: 10.1101/gr.849004
  52. Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C.J., Lu S., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lu F., Marchler G.H., Song J.S., Thanki N., Wang Z., Yamashita R.A., Zhang D., Zheng C., Geer L.Y., Bryant S.H. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucl. Acids Res. 45, D200–D203. doi: 10.1093/nar/gkw1129
  53. Boratyn G.M., Schäffer A.A., Agarwala R., Altschul S.F., Lipman D.J., Madden T.L. (2012) Domain enhanced lookup time accelerated BLAST. Biol. Direct. 7, 12. doi: 10.1186/1745-6150-7-12
  54. Bryson K., Cozzetto D., Jones D.T. (2007) Computer-assisted protein domain boundary prediction using the DomPred server. Curr. Protein Pept. Sci. 8, 181–188. doi: 10.2174/138920307780363415
  55. Cozzetto D., Minneci F., Currant H., Jones D.T. (2016) FFPred 3: feature-based function prediction for all Gene Ontology domains. Sci. Rep. 6, 31865. doi: 10.1038/srep31865
  56. Nugent T., Jones D.T. (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics. 10, 159. doi: 10.1186/1471-2105-10-159
  57. Waterhouse A., Bertoni M., Bienert S., Wong G., Chinikar S., Hajivand Z., Mokhayeri H., Nowotny N., Kayedi M.H. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucl. Acids Res. 46, W296–W303. doi: 10.1093/nar/gky427
  58. Ivics Z., Izsvák Z. (2015) Sleeping Beauty transposition. Microbiol. Spectr. 3, MDNA3-0042-2014. doi: 10.1128/microbiolspec.MDNA3-0042-2014
  59. Ivics Z., Hackett P.B., Plasterk R.H., Izsvak Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 91, 501–510. doi: 10.1016/s0092-8674(00)80436-560
  60. Plasterk R.H., Izsvak Z., Ivics Z. (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332. doi: 10.1016/s0168-9525(99)01777-1
  61. Arai Y., Hosoda F., Kobayashi H., Arai K., Hayashi Y., Kamada N., Kaneko Y., Ohki M. (1997) The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood. 89, 3936–3944.
  62. Lee T.I., Young R.A. (2000) Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137. doi: 10.1146/annurev.genet.34.1.77
  63. Nigg E.A., Raff J.W. (2009) Centrioles, centrosomes, and cilia in health and disease. Cell. 139, 663–678. doi: 10.1016/j.cell.2009.10.036
  64. Klug A. (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231. doi: 10.1146/annurev-biochem-010909-095056
  65. Kumar M., Suleski J.E., Craig A.E., Kasprowicz A.E., Sanderford M., Li M., Stecher G., Hedges S.B. (2022) TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174. doi: 10.1093/molbev/msac174
  66. Cummings M.P. (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. Trends Ecol. Evol. 9, 141–145. doi: 10.1016/0169-5347(94)90179-1
  67. Wallau G.L., Ortiz M.F., Loreto E.L. (2012) Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol. Evol. 4, 689–699. doi: 10.1093/gbe/evs055
  68. Jangam D., Feschotte C., Betrán E. (2017) Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33, 817–831. doi: 10.1016/j.tig.2017.07.011
  69. Hunter D.J., Williams K., Cartinhour S., Herrick G. (1989) Precise excision of telomere-bearing transposons during Oxytricha fallax macronuclear development. Genes Dev. 3, 2101–2112. doi: 10.1101/gad.3.12b.210170
  70. Chen X., Landweber L.F. (2016) Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha. Mob. DNA. 7, 2. doi: 10.1186/s13100-016-0057-9
  71. Jahn C.L., Doktor S.Z., Frels J.S., Jaraczewski J.W., Krikau M.F. (1993) Structures of the Euplotes crassus Tec1 and Tec2 elements: identification of putative transposase coding regions. Gene. 133, 71–78. doi: 10.1016/0378-1119(93)90226-s
  72. Doak T.G., Witherspoon D.J., Jahn C.L., Herrick G. (2003) Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase. Eukaryot. Cell. 2, 95–102. doi: 10.1128/EC.2.1.95-102.2003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of transposes of the Tc1/mariner and pogo superfamilies (a) and diversity of the structure of L31 elements of bivalves (b). TIR/SIP – terminal inverted repeats or subterminal inverted repeats; ORF – open reading frame encoding transposase; ORF2 is an open reading frame encoding a protein of unknown function.

Download (100KB)
3. Fig. 2. Phylogenetic diversity of L31 elements of bivalves. The names of the clades are indicated to the right of the dendrogram. Geometric figures denote the transposons identified in this study: square – order Ostreida, circle – order Mytilida, diamond – order Pectinida, triangle with its apex up – orders Adapedonta and Venerida, triangle with its apex down – order Pterioida. Bootstrap values less than 50% are not shown on the dendrogram.

Download (435KB)
4. Fig. 3. Distribution of L31 transposons among bivalves. nd – no data; a slash separates the number of species in which L31 elements were found and the total number of studied species of the taxon; *in some species only short fragments (scraps) of L31 elements were identified (see text and Table 2). The taxonomic tree was created using data from the World Register of Marine Species (WoRMS) (https://www.marinespecies.org/) and TimeTree (http://www.timetree.org/).

Download (210KB)
5. Fig. 4. Multiple alignment of L31 transposon transposase sequences. The α-helices of the DNA binding domain are highlighted in gray. The proposed NLS is indicated in bold italic. The DDE triad of the catalytic domain is highlighted in black. The GPRK motif is shown in bold and underlined.

Download (2MB)
6. Fig. 5. Features of conserved regions of the catalytic domain of transposase elements L31. Marker amino acid residues of the catalytic domain are highlighted in gray.

Download (283KB)
7. Supplementary
Download (333KB)

Copyright (c) 2024 Russian Academy of Sciences