Melatonin enhances the effect of ABT-737 in acute monocytic leukemia THP-1 cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone synthesized by the pineal gland. Due to its oncostatic effect, it can be considered as an antitumor agent and used for combination therapy. ABT-737, a Bcl-2 inhibitor, promotes cell death after treatment with agents that induce pro-apoptotic signals. In the present study, the combined effect of MEL and ABT-737 on changes in proliferative and mitotic activity, mitochondrial membrane potential, intracellular production of reactive oxygen species (ROS) and cytosolic Ca2+ was studied. Moreover, changes in the expression of anti- and pro-apoptotic proteins (Bcl-2 and Bax), autophagy markers (LC3A/B (I, II)), endoplasmic reticulum stress markers (chaperones BIP and PDI, CHOP) were studied under these conditions. The effect of MEL together with ABT-737 led to an increase in the level of cytosolic Ca2+, intracellular production of ROS, and a decrease in the membrane potential of mitochondria. Under these conditions, the content of Bcl-2 increased, while the level of Bax decreased. The activation of CHOP stimulated autophagy and led to a decrease in the expression of BIP and PDI chaperones. These results suggest that MEL is able to enhance the effects of other chemotherapeutic agents and can be used in strategies in the treatment of cancer.

Full Text

Restricted Access

About the authors

A. I. Lomovsky

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

Yu. L. Baburina

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

R. S. Fadeev

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

M. I. Kobyakova

Institute of Theoretical and Experimental Biophysics; Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: ovkres@mail.ru

Research Institute of Clinical and Experimental Lymphology

Russian Federation, Pushchino, Moscow Region, 142290; Novosibirsk, 630117

Ya. V. Lomovskaya

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

R. R. Krestinin

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

L. D. Sotnikova

Institute of Theoretical and Experimental Biophysics

Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

O. V. Krestinina

Institute of Theoretical and Experimental Biophysics

Author for correspondence.
Email: ovkres@mail.ru
Russian Federation, Pushchino, Moscow Region, 142290

References

  1. De Kouchkovsky I., Abdul-Hay M. (2016) Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 6, e441.
  2. Fernandez H.F., Sun Z., Yao X., Litzow M.R., Luger S.M., Paietta E.M., Racevskis J., Dewald G.W., Ketterling R.P., Bennett J.M., Rowe J.M., Lazarus H.M., Tallman M.S. (2009) Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 361, 1249‒1259.
  3. Coombs C.C., Tavakkoli M., Tallman M.S. (2015) Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 5, e304.
  4. Guerra V.A., DiNardo C., Konopleva M. (2019) Venetoclax-based therapies for acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 32, 145‒153.
  5. Oltersdorf T., Elmore S.W., Shoemaker A.R., Armstrong R.C., Augeri D.J., Belli B.A., Bruncko M., Deckwerth T.L., Dinges J., Hajduk P.J., Joseph M.K., Kitada S., Korsmeyer S.J., Kunzer A.R., Letai A., Li C., Mitten M.J., Nettesheim D.G., Ng S., Nimmer P.M., O’Connor J.M., Oleksijew A., Petros A.M., Reed J.C., Shen W., Tahir S.K., Thompson C.B., Tomaselli K.J., Wang B., Wendt M.D., Zhang H., Fesik S.W., Rosenberg S.H. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 435, 677‒681.
  6. Matthews J.P., Bishop J.F., Young G.A., Juneja S.K., Lowenthal R.M., Garson O.M., Cobcroft R.G., Dodds A.J., Enno A., Gillett E.A., Hermann R.P., Joshua D.E., Ma D.D., Szer J., Taylor K.M., Wolf M., Bradstock K.F., Australian Leukemia Study G. (2001) Patterns of failure with increasing intensification of induction chemotherapy for acute myeloid leukaemia. Br. J. Haematol. 113, 727‒736.
  7. Menendez-Pelaez A., Reiter R.J. (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J. Pineal. Res. 15, 59‒69.
  8. Pourhanifeh M.H., Mahdavinia M., Reiter R.J., Asemi Z. (2019) Potential use of melatonin in skin cancer treatment: а review of current biological evidence. J. Cell. Physiol. 234, 12142‒12148.
  9. Pourhanifeh M.H., Mehrzadi S., Kamali M., Hosseinzadeh A. (2020) Melatonin and gastrointestinal cancers: сurrent evidence based on underlying signaling pathways. Eur. J. Pharmacol. 886, 173471.
  10. Wang J., Xiao X., Zhang Y., Shi D., Chen W., Fu L., Liu L., Xie F., Kang T., Huang W., Deng W. (2012) Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J. Pineal. Res. 53, 77‒90.
  11. Anderson G. (2020) The effects of melatonin on signaling pathways and molecules involved in glioma: melatonin and glioblastoma: pathophysiology and treatment. Fundam. Clin. Pharmacol. 34, 189‒191.
  12. Buyukavci M., Ozdemir O., Buck S., Stout M., Ravindranath Y., Savasan S. (2006) Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam. Clin. Pharmacol. 20, 73‒79.
  13. Bejarano I., Redondo P.C., Espino J., Rosado J.A., Paredes S.D., Barriga C., Reiter R.J., Pariente J.A., Rodriguez A.B. (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J. Pineal. Res. 46, 392‒400.
  14. Shafabakhsh R., Mirzaei H., Asemi Z. (2020) Melatonin: а promising agent targeting leukemia. J. Cell Biochem. 121, 2730‒2738.
  15. Plaimee P., Weerapreeyakul N., Barusrux S., Johns N.P. (2015) Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif. 48, 67‒77.
  16. Yi C., Zhang Y., Yu Z., Xiao Y., Wang J., Qiu H., Yu W., Tang R., Yuan Y., Guo W., Deng W. (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-kappaB/p300 signaling pathways. PLoS One. 9, e99943.
  17. Shen Y.Q., Guerra-Librero A., Fernandez-Gil B.I., Florido J., Garcia-Lopez S., Martinez-Ruiz L., Mendivil-Perez M., Soto-Mercado V., Acuna-Castroviejo D., Ortega-Arellano H., Carriel V., Diaz-Casado M.E., Reiter R.J., Rusanova I., Nieto A., Lopez L.C., Escames G. (2018) Combination of melatonin and rapamycin for head and neck cancer therapy: suppression of AKT/mTOR pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. J. Pineal. Res. 64(3). doi: 10.1111/jpi.12461
  18. Gao Y., Xiao X., Zhang C., Yu W., Guo W., Zhang Z., Li Z., Feng X., Hao J., Zhang K., Xiao B., Chen M., Huang W., Xiong S., Wu X., Deng W. (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-kappaB/iNOS signaling pathways. J. Pineal. Res. 62(2). doi: 10.1111/jpi.12380
  19. Baburina Y., Lomovsky A., Krestinina O. (2021) Melatonin as a potential multitherapeutic agent. J. Pers. Med. 11(4), 274.
  20. Krestinina O., Fadeev R., Lomovsky A., Baburina Y., Kobyakova M., Akatov V. (2018) Melatonin can strengthen the effect of retinoic acid in HL-60 cells. Int. J. Mol. Sci. 19, 2873.
  21. Lomovsky A., Baburina Y., Odinokova I., Kobyakova M., Evstratova Y., Sotnikova L., Krestinin R., Krestinina O. (2020) Melatonin can modulate the effect of navitoclax (ABT-737) in HL-60 cells. Antioxidants (Basel). 9(11), 1143.
  22. Ломовский А.И., Бабурина Ю.Л., Фадеев Р.С., Ломовская Я.В., Кобякова М.И., Крестинин Р.Р., Сотникова Л.Д., Крестинина О.В. (2023) Мелатонин может усиливать действие препаратов, применяемых при лечении лейкемии. Биохимия. 88, 110‒124.
  23. Ломовский А.И., Бабурина Ю.Л., Кобякова М.И., Фадеев Р.С., Акатов В.С., Крестинина О.В. (2020) Мелатонин усиливает химиотерапевтическое действие цитарабина в клетках HL-60. Биол. Мембраны. 37, 103‒109.
  24. Zeeshan H.M., Lee G.H., Kim H.R., Chae H.J. (2016) Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17, 327.
  25. Huber T.B., Walz G., Kuehn E.W. (2011) mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney Int. 79, 502‒511.
  26. Cybulsky A.V. (2013) The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int. 84, 25‒33.
  27. Yuzefovych L.V., LeDoux S.P., Wilson G.L., Rachek L.I. (2013) Mitochondrial DNA damage via augmented oxidative stress regulates endoplasmic reticulum stress and autophagy: crosstalk, links and signaling. PLoS One. 8, e83349.
  28. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer. 26, 171‒176.
  29. Schwende H., Fitzke E., Ambs P., Dieter P. (1996) Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol. 59, 555‒561.
  30. Daigneault M., Preston J.A., Marriott H.M., Whyte M.K., Dockrell D.H. (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 5. e8668.
  31. Mediavilla M.D., Cos S., Sanchez-Barcelo E.J. (1999) Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci. 65, 415‒420.
  32. Fornas O., Mato M.E., Webb S.M. (2000) Antiproliferative effect and cell cycle modulation by melatonin on GH(3) cells. Horm. Res. 53, 251‒255.
  33. Bejarano I., Espino J., Marchena A.M., Barriga C., Paredes S.D., Rodriguez A.B., Pariente J.A. (2011) Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol. Cell. Biochem. 353, 167‒176.
  34. Czabotar P.E., Lessene G., Strasser A., Adams J.M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell. Biol. 15, 49‒63.
  35. Bonora M., Pinton P. (2014) The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front. Oncol. 4, 302.
  36. Boga J.A., Caballero B., Potes Y., Perez-Martinez Z., Reiter R.J., Vega-Naredo I., Coto-Montes A. (2019) Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. J. Pineal. Res. 66, e12534.
  37. Kato H., Nishitoh H. (2015) Stress responses from the endoplasmic reticulum in cancer. Front. Oncol. 5, 93.
  38. Yorimitsu T., Nair U., Yang Z., Klionsky D.J. (2006) Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299‒30304.
  39. Akbarzadeh M., Movassaghpour A.A., Ghanbari H., Kheirandish M., Fathi Maroufi N., Rahbarghazi R., Nouri M., Samadi N. (2017) The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci. Rep. 7, 17062.
  40. Sonehara N.M., Lacerda J.Z., Jardim-Perassi B.V., de Paula Jr R., Jr., Moschetta-Pinheiro M.G., Souza Y.S.T., de Andrade J.C.J., De Campos Zuccari D.A.P. (2019) Melatonin regulates tumor aggressiveness under acidosis condition in breast cancer cell lines. Oncol. Lett. 17, 1635‒1645.
  41. Liu L., Xu Y., Reiter R.J. (2013) Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone. 55, 432‒438.
  42. Wang L., Wang C., Choi W.S. (2022) Use of melatonin in cancer treatment: where are we? Int. J. Mol. Sci. 23(7), 3779.
  43. Wang X., Wang B., Zhan W., Kang L., Zhang S., Chen C., Hou D., You R., Huang H. (2019) Melatonin inhibits lung metastasis of gastric cancer in vivo. Biomed. Pharmacother. 117, 109018.
  44. Tsukano H., Gotoh T., Endo M., Miyata K., Tazume H., Kadomatsu T., Yano M., Iwawaki T., Kohno K., Araki K., Mizuta H., Oike Y. (2010) The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 30, 1925‒1932.
  45. Iurlaro R., Munoz-Pinedo C. (2016) Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640‒2652.
  46. Dhillon S. (2018) Ivosidenib: first global approval. Drugs. 78, 1509‒1516.
  47. Li G., Mongillo M., Chin K.T., Harding H., Ron D., Marks A.R., Tabas I. (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol. 186, 783‒792.
  48. Giorgi C., Romagnoli A., Pinton P., Rizzuto R. (2008) Ca2+ signaling, mitochondria and cell death. Curr. Mol. Med. 8, 119‒130.
  49. Pinton P., Giorgi C., Siviero R., Zecchini E., Rizzuto R. (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 27, 6407‒6418.
  50. Kruman I., Guo Q., Mattson M.P. (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J. Neurosci. Res. 51, 293‒308.
  51. Kowaltowski A.J., de Souza-Pinto N.C., Castilho R.F., Vercesi A.E. (2009) Mitochondria and reactive oxygen species. Free Radic. Biol. Med. 47, 333‒343.
  52. Maciel E.N., Vercesi A.E., Castilho R.F. (2001) Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79, 1237‒1245.
  53. Kim K.W., Moretti L., Mitchell L.R., Jung D.K., Lu B. (2010) Endoplasmic reticulum stress mediates radiation-induced autophagy by Рerk-eIF2alpha in caspase-3/7-deficient cells. Oncogene. 29, 3241‒3251.
  54. Rouschop K.M., van den Beucken T., Dubois L., Niessen H., Bussink J., Savelkouls K., Keulers T., Mujcic H., Landuyt W., Voncken J.W., Lambin P., van der Kogel A.J., Koritzinsky M., Wouters B.G. (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127‒141.
  55. Ubeda M., Wang X.Z., Zinszner H., Wu I., Habener J.F., Ron D. (1996) Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol. Cell Biol. 1, 1479‒1489.
  56. Kosakowska-Cholody T., Lin J., Srideshikan S.M., Scheffer L., Tarasova N.I., Acharya J.K. (2014) HKH40A downregulates GRP78/BiP expression in cancer cells. Cell Death Dis. 5, e1240.
  57. Lee E., Lee D.H. (2017) Emerging roles of protein disulfide isomerase in cancer. BMB Rep. 50, 401‒410.
  58. Nishitoh H. (2012) CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 151, 217‒219.
  59. Fernandez A., Ordonez R., Reiter R.J., Gonzalez-Gallego J., Mauriz J.L. (2015) Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J. Pineal. Res. 59, 292‒307.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration dependence of the cytotoxic effects of MEL (a) and ABT-737 (b) in THP-1 cells. The proportion of viable cells was determined 24 hours after the addition of substances by the intensity of resazurin reduction. Cells were seeded in a 96-well plate at a density of 5 × 103 cells per well and treated with substances at different concentrations. Data are presented as mean ± standard deviation (n = 6).

Download (120KB)
3. Fig. 2. Viability and mitotic activity of THP-1 cells after 24 hours of incubation with MEL and ABT-737. a – Change in proliferation. b – Changes in the mitotic index in the presence of MEL and CIT. The number of viable cells in the intact culture (control, without drug treatment) was taken to be 100%. Data are presented as mean ± standard deviation (n = 6). *p < 0.05 – significant change compared to control, #p < 0.05 – significant change compared to AVT-737.

Download (117KB)
4. Fig. 3. Effect of MEL on the viability of human monocytes. The cells were incubated with MEL for 24 hours. The number of living cells in the intact culture (control, without drug treatment) was taken as 100%. Data are presented as mean ± standard deviation (n = 6).

Download (75KB)
5. Fig. 4. Effect of MEL and its combination with ABT-737 on the content of Bcl-2 and Bax proteins in THP-1 cells. Cells were incubated with the drugs for 24 hours. a – Immunostaining with antibodies to Bcl-2 and Bax. GAPDH was used as a protein loading control. b – Bcl-2/GAPDH ratio diagram. c – Bax/GAPDH ratio diagram. The protein level in the cell lysate without additives (100%) was used as a control. Data are presented as mean ± standard deviation (n = 4). *p < 0.05 – Significant change compared to control, #p < 0.05 – significant change compared to ABT-737.

Download (188KB)
6. Fig. 5. Effect of MEL and ABT-737 on changes in cytosolic Ca2+ and CHOP content in THP-1 cells. Cells were incubated with the drugs for 24 hours. a – Change in cytosolic Ca2+ content. Fluorescence intensity of intact cells was used as a control, data are presented as mean ± standard deviation (n = 5). b – Immunostaining with antibodies to CHOP and GAPDH was used as a control for protein load. Data are presented as mean ± standard deviation (n = 4). *p < 0.05 – significant change compared to the corresponding control, #p < 0.05 – significant change compared to ABT-737.

Download (176KB)
7. Fig. 6. Effect of MEL and ABT-737 on changes in ΔΨm, intracellular ROS production and autophagy markers (LC3A/B-I/II) in THP-1 cells. The cells were incubated with the drugs for 24 hours. a – Change in ΔΨm in THP-1 cells. b – Change in intracellular ROS production; data are presented as mean ± standard deviation (n = 6). c – Immunostaining with antibodies to LC3A/B-I/II, GAPDH was used as a protein load control. Data are presented as mean ± standard deviation (n = 4). *p < 0.05 – significant change compared to the corresponding control, #p < 0.05 – significant change compared to ABT-737.

Download (279KB)
8. Fig. 7. Effect of MEL and its combination with ABT-737 on the content of BIP and PDI in THP-1 cells. Cells were incubated with the drugs for 24 hours. a – Immunostaining with antibodies to BIP and PDI, GAPDH was used as a protein load control. b – Diagram showing the ratio of BIP to GAPDH. c – Diagram showing the ratio of PDI to GAPDH. The protein level in the cell lysate without any additives served as a control (100%). Data are presented as mean ± standard deviation (n = 4). *p < 0.05 – significant change compared to control, #p < 0.05 – significant change compared to AVT-737.

Download (149KB)

Copyright (c) 2024 Russian Academy of Sciences