microRNA Biogenesis during Cellular Senesence Induced by Chronic Stress of the Endoplasmic Reticulum
- Authors: Zaichenko D.M.1, Mikryukova A.A.1, Astafeva I.R.1, Malakho S.G.2, Kubatiev A.A.1,3, Moskovtsev A.A.1,3
-
Affiliations:
- Institute of General Pathology and Pathophysiology
- Botkin City Clinical Hospital of the Moscow City Health Department
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Health of the Russian Federation
- Issue: Vol 57, No 4 (2023)
- Pages: 671-686
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://innoscience.ru/0026-8984/article/view/655402
- DOI: https://doi.org/10.31857/S0026898423040250
- EDN: https://elibrary.ru/QMCHZK
- ID: 655402
Cite item
Abstract
MicroRNAs are small non-coding regulatory RNAs about 22 nt long, post-transcriptional and transcriptional regulators of gene expression that stabilize the cellular phenotype and play an important role in differentiation, development, and apoptosis. MicroRNA biogenesis includes several precisely controlled post-transcriptional stages of processing and transport, including cytoplasmic cleavage of pre-miRNA by type III ribonuclease DICER with the formation of a mature duplex included in the RISC complex. The role of miRNA and its biogenesis are not well understood in such an important process as cellular stress. Cellular stress is a non-specific cellular response to non-physiological stimuli that can switch a cell to death or cellular senescence. The global decrease in microRNA levels is a key feature of cancer cells and an important reason for the formation of a malignant phenotype. In this work, using flow cytometry and high-throughput analysis of gene expression, we showed that chronic endoplasmic reticulum (ER) stress, one of the types of cellular stress associated with impaired protein folding in the ER, leads to the formation of a cellular aging phenotype in fibroblast-like FRSN cells. Despite the fact that acute ER stress can reduce miRNA biogenesis, chronic stress does not lead to a significant drop in global miRNA expression and is accompanied by only a slight decrease in DICER1 mRNA expression. Under chronic ER stress, we found an increase in cell population heterogeneity in terms of lysosomal beta-galactosidase activity, which does not exclude induced or initial cell heterogeneity and in terms of expression of microRNA biogenesis pathway components.
Keywords
About the authors
D. M. Zaichenko
Institute of General Pathology and Pathophysiology
Email: bioinf@mail.ru
Russia, 125315, Moscow
A. A. Mikryukova
Institute of General Pathology and Pathophysiology
Email: bioinf@mail.ru
Russia, 125315, Moscow
I. R. Astafeva
Institute of General Pathology and Pathophysiology
Email: bioinf@mail.ru
Russia, 125315, Moscow
S. G. Malakho
Botkin City Clinical Hospital of the Moscow City Health Department
Email: bioinf@mail.ru
Russia, 125284, Moscow
A. A. Kubatiev
Institute of General Pathology and Pathophysiology; Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Health of the Russian Federation
Email: bioinf@mail.ru
Russia, 125315, Moscow; Russia, 125993, Moscow
A. A. Moskovtsev
Institute of General Pathology and Pathophysiology; Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Health of the Russian Federation
Author for correspondence.
Email: bioinf@mail.ru
Russia, 125315, Moscow; Russia, 125993, Moscow
References
- Kozutsumi Y., Segal M., Normington K., Gething M.J., Sambrook J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 332, 462–464. https://doi.org/10.1038/332462A0
- Schröder M., Kaufman R.J. (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739‒789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
- Меситов М.В., Московцев А.А., Кубатеев А.А. (2013) Молекулярная логика сигнальных путей при стрессе эндоплазматического ретикулума: система UPR (Unfolded Protein Response). Патологическая физиология и экспериментальная терапия. 57(4), 97–108. https://pubmed.ncbi.nlm.nih.gov/24640782/
- Acosta-Alvear D., Karagöz G.E., Fröhlich F., Li H., Walther T.C., Walter P. (2018) The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. Elife. 7, e43036. https://doi.org/10.7554/eLife.43036
- Korennykh A., Walter P. (2012) Structural basis of the unfolded protein response. Annu. Rev. Cell Develop. Biol. 28, 251–277. https://doi.org/10.1146/annurev-cellbio-101011-155826
- Московцев А.А., Клементьева Т.С., Зайченко Д.М., Колесов Д.В., Соколовская А.А., Кубатиев А.А. (2018) Проадаптивная и проапоптотическая активности стресс-активируемой рибонуклеазы IRE1: разделение на временнóй шкале клеточного стресса. Патологическая физиология и экспериментальная терапия. 62, 21–27. https://doi.org/10.25557/0031-2991.2018.04.21-27
- Mesitov M.V., Soldatov R.A., Zaichenko D.M., Malakho S.G., Klementyeva T.S., Sokolovskaya A.A., Kubatiev A.A., Mironov A.A., Moskovtsev A.A. (2017) Differential processing of small RNAs during endoplasmic reticulum stress. Sci. Rep. 7, 46080. https://doi.org/10.1038/srep46080
- Bartel D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell. 136, 215–233. https://doi.org/10.1016/j.cell.2009.01.002
- Lee R.C., Feinbaum R.L., Ambros V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75, 843–854. https://doi.org/10.1016/0092-8674(93)90529-Y
- Kim D.H., Sætrom P., Snøve O., Rossi J.J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl. Acad. Sci. USA. 105, 16230–16235. https://doi.org/10.1073/PNAS.0808830105
- Kozomara A., Griffiths-Jones S. (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids Res. 42, 68–73. https://doi.org/10.1093/nar/gkt1181
- Kim V.N., Han J., Siomi M.C. (2009) Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139. https://doi.org/10.1038/nrm2632
- Bartel D.P. (2018) Metazoan microRNAs. Cell. 173, 20–51. https://doi.org/10.1016/j.cell.2018.03.006
- Fabian M.R., Sonenberg N., Filipowicz W. (2010) Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379. https://doi.org/10.1146/ANNUREV-BIOCHEM-060308-103103
- Wienholds E., Koudijs M.J., van Eeden F.J., Cuppen E., Plasterk R.H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35, 217–218. https://doi.org/10.1038/NG1251
- Bernstein E., Kim S.Y., Carmell M.A., Murchison E.P., Alcorn H., Li M.Z., Mills A.A., Elledge S.J., Anderson K.V., Hannon G.J. (2003) Dicer is essential for mouse development. Nat. Genet. 35, 215–217. https://doi.org/10.1038/NG1253
- Martello G., Rosato A., Ferrari F., Manfrin A., Cordenonsi M., Dupont S., Enzo E., Guzzardo V., Rondina M., Spruce T., Parenti A.R., Daidone M.G., Bicciato S., Piccolo S. (2010) A microRNA targeting dicer for metastasis control. Cell. 141, 1195–1207. https://doi.org/10.1016/J.CELL.2010.05.017
- Pampalakis G., Diamandis E.P., Katsaros D., Sotiropoulou G. (2010) Down-regulation of dicer expression in ovarian cancer tissues. Clin. Biochemistry. 43, 324–327. https://doi.org/10.1016/J.CLINBIOCHEM.2009.09.014
- Kaneko H., Dridi S., Tarallo V., Gelfand B.D., Fowler B.J., Cho W.G., Kleinman M.E., Ponicsan S.L., Hauswirth W.W., Chiodo V.A., Karikó K., Yoo J.W., Lee D.K., Hadziahmetovic M., Song Y., Misra S., Chaudhuri G., Buaas F.W., Braun R.E., Hinton D.R., Zhang Q., Grossniklaus H.E., Provis J.M., Madigan M.C., Milam A.H., Justice N.L., Albuquerque R.J.C., Blandford A.D., Bogdanovich S., Hirano Y., Witta J., Fuchs E., Littman D.R., Ambati B.K., Rudin C.M., Chong M.M., Provost P., Kugel J.F., Goodrich J.A., Dunaief J.L., Baffi J.Z., Ambati J. (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature. 471, 325–332. https://doi.org/10.1038/NATURE09830
- Kumar M.S., Lu J., Mercer K.L., Golub T.R., Jacks T. (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677. https://doi.org/10.1038/ng2003
- Toussaint O., Medrano E.E., von Zglinicki T. (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp. Gerontology. 35, 927–945. https://doi.org/10.1016/S0531-5565(00)00180-7
- Childs B.G., Durik M., Baker D.J., Van Deursen J.M. (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Medicine. 21(12), 1424–1435. https://doi.org/10.1038/nm.4000
- Narita M., Nũnez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G. J., Lowe S.W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113, 703–716. https://doi.org/10.1016/S0092-8674(03)00401-X
- Hayflick L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636. https://doi.org/10.1016/0014-4827(65)90211-9
- Lee S., Schmitt C.A. (2019) The dynamic nature of senescence in cancer. Nat. Cell. Biol. 21, 94–101. https://doi.org/10.1038/s41556-018-0249-2
- Seshadri T., Campisi J. (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science. 247, 205–209. https://doi.org/10.1126/SCIENCE.2104680
- Beauséjour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222. https://doi.org/10.1093/EMBOJ/CDG417
- Milanovic M., Fan D.N.Y., Belenki D., Däbritz J.H.M., Zhao Z., Yu Y., Dörr J.R., Dimitrova L., Lenze D., Monteiro Barbosa I.A., Mendoza-Parra M.A., Kanashova T., Metzner M., Pardon K., Reimann M., Trumpp A., Dörken B., Zuber J., Gronemeyer H., Hummel M., Dittmar G., Lee S., Schmitt C.A. (2018) Senescence-associated reprogramming promotes cancer stemness. Nature. 553, 96–100. https://doi.org/10.1038/nature25167
- Pluquet O., Pourtier A., Abbadie C. (2015) The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol. Cell Physiol. 308, 415–425. https://doi.org/10.1152/ajpcell.00334.2014
- Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102
- Reich M., Liefeld T., Gould J., Lerner J., Tamayo P., Mesirov J.P. (2006) GenePattern 2.0. Nat. Genet. 38, 500–501. https://doi.org/10.1038/ng0506-500
- Кухарский М.С., Эверетт М.У., Лыткина О.А., Распопова М.А., Ковражкина Е.А., Овчинников Р.К., Антохин А.И., Московцев А.А. (2022) Нарушение белкового гомеостаза в клетке как основа патогенеза нейродегенеративных заболеваний. Молекуляр. биология. 56(6), 1044‒1056.
- Stein G.H., Drullinger L.F., Soulard A., Dulić V. (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109–2117. https://doi.org/10.1128/MCB.19.3.2109
- Wang A.S., Dreesen O. (2018) Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247. https://doi.org/10.3389/fgene.2018.00247
- Childs B.G., Baker D.J., Kirkland J.L., Campisi J., Van Deursen J.M. (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153. https://doi.org/10.15252/embr.201439245
- González-Gualda E., Baker A.G., Fruk L., Muñoz-Espín D. (2021) A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 288, 56–80. https://doi.org/10.1111/FEBS.15570
- Braakman I., Helenius J., Helenius A. (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717–1722. https://doi.org/10.1002/J.1460-2075.1992.TB05223.X
- Oslowski C.M., Urano F. (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71. https://doi.org/10.1016/B978-0-12-385114-7.00004-0
- Tu B.P., Weissman J.S. (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell. Biol. 164, 341–346. https://doi.org/10.1083/JCB.200311055
- Hwang C., Sinskey A.J., Lodish H.F. (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 257, 1496–1502. https://doi.org/10.1126/SCIENCE.1523409
- Меситов М.В., Игнашкова Т.И., Мещерский М.Е., Акопов А.С., Соколовская А.А., Московцев А.А., Кубатиев А.А. (2012) Индукция стресса эндоплазматического ретикулума в условиях окислительно-восстановительного дисбаланса в клетках Т-лимфобластной лейкемии человека. Патологическая физиология и экспериментальная терапия, 56(3), 87‒93. https://pubmed.ncbi.nlm.nih.gov/23072118/.
- Held K.D., Sylvester F.C., Hopcia K.L., Biaglow J.E. (1996) Role of Fenton chemistry in thiol-induced toxicity and apoptosis. Radiation Res. 145, 542–553. https://doi.org/10.2307/3579272
- Masciarelli S., Sitia R. (2008) Building and operating an antibody factory: redox control during B to plasma cell terminal differentiation. Biochim. Biophys. Acta. 1783(4), 578‒588. https://doi.org/10.1016/J.BBAMCR.2008.01.003
- Anelli T., Bergamelli L., Margittai E., Rimessi A., Fagioli C., Malgaroli A., Pinton P., Ripamonti M., Rizzuto R., Sitia R. (2012) Ero1α regulates Ca2+ fluxes at the endoplasmic reticulum–mitochondria interface (MAM). Antioxid. Redox Signal. 16, 1077–1087. https://doi.org/10.1089/ARS.2011.4004
- Tavender T.J., Bulleid N.J. (2010) Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation. J. Cell Sci. 123, 2672–2679. https://doi.org/10.1242/JCS.067843
- Zito E., Melo E.P., Yang Y., Wahlander Å., Neubert T.A., Ron D. (2010) Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell. 40, 787. https://doi.org/10.1016/J.MOLCEL.2010.11.010
- Cormenier J., Martin N., Deslé J., Salazar-Cardozo C., Pourtier A., Abbadie C., Pluquet O. (2018) The ATF6α arm of the unfolded protein response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2 intracrine pathway. Mech. Ageing Dev. 170, 82–91. https://doi.org/10.1016/J.MAD.2017.08.003
- Wiesen J.L., Tomasi T.B. (2009) Dicer is regulated by cellular stresses and interferons. Mol. Immunol. 46, 1222. https://doi.org/10.1016/J.MOLIMM.2008.11.012
- Emde A., Hornstein E. (2014) miRNAs at the interface of cellular stress and disease. EMBO J. 33, 1428–1437. https://doi.org/10.15252/EMBJ.201488142
- Otsuka M., Jing Q., Georgel P., New L., Chen J., Mols J., Kang Y.J., Jiang Z., Du X., Cook R., Das S.C., Pattnaik A.K., Beutler B., Han J. (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity. 27, 123–134. https://doi.org/10.1016/J.IMMUNI.2007.05.014
- Müller S., Imler J.L. (2007) Dicing with viruses: micro-RNAs as antiviral factors. Immunity. 27, 1–3. https://doi.org/10.1016/J.IMMUNI.2007.07.003
- Pagliuso D.C., Bodas D.M., Pasquinelli A.E. (2021) Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genet. 17, e1009734. https://doi.org/10.1371/JOURNAL.PGEN.1009734
- Mori M.A., Raghavan P., Thomou T., Boucher J., Robida-Stubbs S., MacOtela Y., Russell S.J., Kirkland J.L., Blackwell T.K., Kahn C.R. (2012) Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metabolism. 16, 336‒347. https://doi.org/10.1016/J.CMET.2012.07.017
- Turi Z., Lacey M., Mistrik M., Moudry P. (2019) Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY). 11, 2512. https://doi.org/10.18632/AGING.101922
Supplementary files
