Определение изменения дипольного момента при возбуждении в хромофоре зеленого флуоресцентного белка из траекторий молекулярной динамики с потенциалами квантовой механики/молекулярной механики методами машинного обучения
- Authors: Захарова Т.М.1, Кулакова A.M.1, Криницкий М.A.2,3,4, Варенцов M.И.2, Хренова М.Г.1,5
-
Affiliations:
- Химический факультет МГУ имени М. В. Ломоносова
- Научно-исследовательский вычислительный центр МГУ имени М. В. Ломоносова
- Московский физико-технический институт
- Институт океанологии им. П. П. Ширшова РАН
- ФИЦ Биотехнологии РАН
- Issue: Vol 98, No 11 (2024)
- Pages: 133-138
- Section: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- Submitted: 29.05.2025
- Published: 15.11.2024
- URL: https://innoscience.ru/0044-4537/article/view/681025
- DOI: https://doi.org/10.31857/S0044453724110152
- EDN: https://elibrary.ru/EYLEJK
- ID: 681025
Cite item
Abstract
Проведены расчеты молекулярно-динамических траекторий с потенциалами квантовой механики / молекулярной механики (КМ/ММ) для белка EYFP семейства зеленого флуоресцентного белка с последующим построением моделей машинного обучения для установления взаимосвязи между геометрическими параметрами хромофора в кадрах траектории и свойствами его электронного возбуждения. Показано, что недостаточно использовать в качестве геометрического параметра только мостиковые связи между фенильным и имидазолидоновым фрагментами хромофора, а необходимо добавлять в модель еще, по крайней мере, две соседние связи. Предложенные модели позволяют определять величину изменения дипольного момента при возбуждении со средней ошибкой 0.11 а. е.
Full Text

About the authors
Т. М. Захарова
Химический факультет МГУ имени М. В. Ломоносова
Email: khrenovamg@my.msu.ru
Russian Federation, Москва
A. M. Кулакова
Химический факультет МГУ имени М. В. Ломоносова
Email: khrenovamg@my.msu.ru
Russian Federation, Москва
М. A. Криницкий
Научно-исследовательский вычислительный центр МГУ имени М. В. Ломоносова; Московский физико-технический институт; Институт океанологии им. П. П. Ширшова РАН
Email: khrenovamg@my.msu.ru
Russian Federation, Москва; Долгопрудный; Москва
M. И. Варенцов
Научно-исследовательский вычислительный центр МГУ имени М. В. Ломоносова
Email: khrenovamg@my.msu.ru
Russian Federation, Москва
М. Г. Хренова
Химический факультет МГУ имени М. В. Ломоносова; ФИЦ Биотехнологии РАН
Author for correspondence.
Email: khrenovamg@my.msu.ru
Russian Federation, Москва; Москва
References
- Enterina J.R., Wu L., Campbell R.E. // Curr. Opin. Chem. Biol. 2015. V. 27. P. 10. https://doi.org/10.1016/j.cbpa.2015.05.001
- Shinoda H., Shannon M., Nagai T. // Int. J. Mol. Sci. 2018. V. 19. P. 1548. https://doi.org/10.3390/ijms19061548
- Day R.N., Davidson M.W. // Chem. Soc. Rev. 2009. V. 38. P. 2887. https://doi.org/10.1039/b901966a
- Willig K.I., Wegner W., Müller A. et al. // Cell Rep. 2021. V. 35. P. 109192. https://doi.org/10.1016/j.celrep.2021.109192
- Lippincott-Schwartz J., Patterson G.H. // Trends Cell Biol. 2009. V. 19. P. 555. https://doi.org/10.1016/j.tcb.2009.09.003
- Tantama M., Hung Y.P., Yellen G. // J. Am. Chem. Soc. 2011. V. 133. P. 10034. https://doi.org/10.1021/ja202902d
- Ibraheem A., Campbell R.E. // Curr. Opin. Chem. Biol. 2010. V. 14. P. 30. https://doi.org/10.1016/j.cbpa.2009.09.033
- Kollenda S., Kopp M., Wens J.et al. // Acta Biomater. 2020. V. 111. P. 406. https://doi.org/10.1016/j.actbio.2020.05.014
- Tsien R.Y. // Annu. Rev. Biochem. 1998. V. 67. P. 509. https://doi.org/10.1146/annurev.biochem.67.1.509
- Rodriguez E.A., Campbell R.E., Lin J.Y. et al. // Trends Biochem. Sci. 2017. V. 42. P. 111. https://doi.org/10.1016/j.tibs.2016.09.010
- Lin C.-Y., Romei M.G., Oltrogge L.M. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 15250. https://doi.org/10.1021/jacs.9b07152
- Khrenova M.G., Mulashkin F.D., Nemukhin A.V. // J. Chem. Inf. Model. 2021. V. 61. P. 5125. https://doi.org/10.1021/acs.jcim.1c00981
- Drobizhev M., Tillo S., Makarov N.S.et al. // J. Phys. Chem. B2009. V. 113. P. 12860. https://doi.org/10.1021/jp907085p
- Bublitz G., King B.A., Boxer S.G. // J. Am. Chem. Soc. 1998. V. 120. P. 9371. https://doi.org/10.1021/ja981606e
- Drobizhev M., Makarov N.S., Tillo S.E.et al. // J. Phys. Chem. B2012. V. 116. P. 1736. https://doi.org/10.1021/jp211020k
- Drobizhev M., Makarov N.S., Tillo S.E. et al. // Nat. Methods 2011. V. 8. P. 393. https://doi.org/10.1038/nmeth.1596
- Drobizhev M., Callis P.R., Nifosì R.et al. // Sci. Rep. 2015. V. 5. P. 13223. https://doi.org/10.1038/srep13223
- Khrenova M.G., Nemukhin A.V., Tsirelson V.G. // Chem. Phys. 2019. V. 522. P. 32. https://doi.org/10.1016/j.chemphys.2019.02.010
- Khrenova M.G., Mulashkin F.D., Bulavko E.S. et al. // J. Chem. Inf. Model. 2020. V. 60. P. 6288. https://doi.org/10.1021/acs.jcim.0c01028
- Nifosì R., Mennucci B., Filippi C. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 18988. https://doi.org/10.1039/C9CP03722E
- De Meulenaere E., Nguyen Bich N., de Wergifosse M.et al. // J. Am. Chem. Soc. 2013. V. 135. P. 4061. https://doi.org/10.1021/ja400098b
- Spiess E., Bestvater F., Heckel-Pompey A. et al. // J. Microsc. 2005. V. 217. P. 200. https://doi.org/10.1111/j.1365–2818.2005.01437.x
- Best R.B., Zhu X., Shim J. et al. // J. Chem. Theory Comput. 2012. V. 8. P. 3257. https://doi.org/10.1021/ct300400x
- Denning E.J., Priyakumar U.D., Nilsson L. et al. // J. Comput. Chem. 2011. V. 32. P. 1929. https://doi.org/10.1002/jcc.21777
- Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
- Phillips J.C., Hardy D.J., Maia J.D.C. et al. // Ibid. 2020. V. 153. P. 044130. https://doi.org/10.1063/5.0014475
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522
- Seritan S., Bannwarth C., Fales B.S.et al. // WIREs Comput. Mol. Sci. 2021. V. 11. P. e1494. https://doi.org/10.1002/wcms.1494
- Melo M.C.R., Bernardi R.C., Rudack T. et al. // Nat. Methods 2018. V. 15. P. 351. https://doi.org/10.1038/nmeth.4638
- Chai J.-D., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615. https://doi.org/10.1039/b810189b
- Neese, F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73–78, https://doi.org/10.1002/wcms.81.
Supplementary files
