ЭИС-исследование оксидного слоя в пористом тантале

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Электрохимической импедансной спектроскопией изучено влияние потенциала (E) на емкость (С) пористого тантала, покрытого слоем аморфного Ta2O5. Показано, что в широком диапазоне потенциалов наблюдается положительная линейная зависимость 1/С2 от потенциала, значение коэффициента наклона которой может использоваться для контроля оксидного слоя в пористом тантале. Установлено, что трансформация оксидного слоя при отжигах в диапазоне температур 100–700°С существенно влияет на 1/С2(E)-графики. Отжиги при температурах 100–500°С увеличивают концентрацию кислородных вакансий в оксидном слое из-за перехода части кислорода в тантал, что приводит к появлению участков с меньшим коэффициентом наклона по сравнению с исходным образцом. После отжигов при температурах 600 и 700°С в оксидной пленке формируется фаза TaO, что сопровождается значительным возрастанием емкости и ее слабой зависимостью от потенциала из-за появления в оксидной пленке высокой концентрации доноров. Показана перспективность использования 1/С2(E)-зависимостей для контроля оксидного слоя в пористом тантале, что может быть полезно для технологии танталовых конденсаторов.

Full Text

Restricted Access

About the authors

А. В. Сюгаев

Удмуртский федеральный исследовательский центр УрО РАН

Author for correspondence.
Email: syual@udman.ru
Russian Federation, Ижевск

М. А. Еремина

Удмуртский федеральный исследовательский центр УрО РАН

Email: syual@udman.ru
Russian Federation, Ижевск

References

  1. Song H.-K., Jung Y.-H., Lee K.-H., Dao L.H. // Electrochim. Acta. 1999. V. 44. P. 3513. https://doi.org/10.1016/S0013-4686(99)00121-8
  2. Song H.-K., Hwang H.-Y., Lee K.-H., Dao L.H. // Electrochim. Acta. 2000. V. 45. P. 2241. https://doi.org/10.1016/S0013-4686(99)00436-3
  3. Abouelamaiem D.I., He G., Neville T.P. et al. // Electrochim. Acta. 2018. V. 284. P. 597. https://doi.org/10.1016/j.electacta.2018.07.190
  4. Syugaev A.V., Zonov R.G., Mikheev K.G. et al. // J. Phys. Chem. Solids. 2023. V. 181. № 111533. https://doi.org/10.1016/j.jpcs.2023.111533
  5. Huang J., Gao Y., Luo J. et al. // J. Electrochem. Soc. 2020. V. 167. № 166503. https://doi.org/10.1149/1945-7111/abc655
  6. Сюгаев А.В., Порсев В.Е. // Конденсированные среды и межфазные границы. 2024. Т. 26. № 1. С. 135. https://doi.org/10.17308/kcmf.2024.26/11817 (Syugaev A.V., Porsev V.E. // Condensed Matter and Interphases. 2024, V. 26. № 1. P. 135. https://doi.org/10.17308/kcmf.2024.26/11817)
  7. Toor Ihsan-ul-Haq // J. Electrochem. Soc. 2011. V. 158. P. C391. https://doi.org/10.1149/2.083111jes
  8. Baka O., Bacha O., Redha Khelladi M., Azizi A. // Bull. Mater. Sci. 2023. V. 46. № 84. https://doi.org/10.1007/s12034-023-02915-5
  9. Mibus M., Jensen C., Hu X. et al. // Appl. Phys. Lett. 2014. V. 104. № 244103. http://doi.org/10.1063/1.4882656
  10. Daideche K., Azizi A. // J Mater Sci: Mater Electron. 2017. V. 28. P. 8051. http://doi.org/10.1007/s10854-017-6511-8
  11. Levine K.L., Tallman D.E., Bierwagen G.P. // J. Mater. Process. Tech. 2008. V. 199. P. 321. http://doi.org/10.1016/j.jmatprotec.2007.08.023
  12. Mardare A.I., Ludwig A., Savan A., Hassel A.W. // Sci. Technol. Adv. Mater. 2014. V. 15. № 015006. http://doi.org/10.1088/1468-6996/15/1/015006
  13. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. http://doi.org/10.1007/BF02471306
  14. Jang J.H., Yoon S., Ka B.H. et al. // J. Electrochem. Soc. 2005. V. 152. P. A1418. https://doi.org/10.1149/1.1931469
  15. Ge H., Tian H., Zhou Y. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 2401. https://doi.org/10.1021/am404743a
  16. Hankin A., Bedoya-Lora F.E., Alexander J.C. et al. // J. Mater. Chem. A. 2019. V. 7. P. 26162. https://doi.org/10.1039/c9ta09569a
  17. Nguyen H.T., Tran T.L., Nguyen D.T. et al. // J. Korean Ceram. Soc. 2018. V. 55. P. 244. https://doi.org/10.4191/kcers.2018.55.3.11
  18. Ла Мантия Ф., Хабазаки X., Сантамария М., Ди Кварто Ф. // Электрохимия. 2010. Т. 46. С. 1395. (La Mantia F., Habazaki H., Santamaria M., Di Quarto F. // Russian J. Electrochem. 2010. V. 46. P. 1306. https://doi.org/10.1134/S102319351011011X)
  19. Di Quarto F., La Mantia F., Santamaria M. // Electrochim. Acta. 2005. V. 50. P. 5090. https://doi.org/10.1016/j.electacta.2005.03.065
  20. Deo M., Möllmann A., Haddad J. et al. // Nanomaterials. 2022. V. 12. № 780. https://doi.org/10.3390/nano12050780
  21. Chun W.-J., Ishikawa A., Fujisawa H. et al. // J. Phys. Chem. B. 2003. V. 107. P. 1798. https://doi.org/10.1021/jp027593f
  22. Freeman Y., Lessner P. // IMAPS High Temperature Electronics Network (HiTEN2019). P. 000091. https://doi.org/10.4071/2380-4491.2019.HiTen.000091
  23. Garg S.P., Krishnamurthy N., Awasthi A., Venkatraman M. // J. Phase Equilibria. 1996. V. 17. P. 63. https://doi.org/10.1007/BF02648373
  24. Korshunov A.V, Pustovalov A.V., Morozova T.P., Perevezentseva D.O. // Oxid. Met. 2020. V. 93. P. 301. https://doi.org/10.1007/s11085-020-09957-8
  25. Sethi G., Bontempo B., Furman E. et al. // J. Mater. Res. 2011. V. 26. P. 745. https://doi.org/10.1557/jmr.2010.77
  26. Guo Sheng Moo J., Awaludin Z., Okajima T., Ohsaka T. // J. Solid State Electrochem. 2013. V. 17. P. 3115. https://doi.org/10.1007/s10008-013-2216-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nyquist plots (a); phase angle (b) and capacitance (c) dependence on alternating current frequency for Ta/Ta2O5 in 1 M Na2SO4 depending on the potential (potentials relative to the Ag/AgCl reference electrode are shown in the figures).

Download (37KB)
3. Fig. 2. 1/C2(E) plots for a Ta/Ta2O5 sample measured at different alternating current frequencies (a); 1/C2(E) plots for five Ta/Ta2O5 samples from the same series measured at f=0.1 Hz (b); the same plots (f=0.1 Hz) after normalization to the capacitance at E=600 mV (c). Figures (b) and (c) show the slope coefficients (k) of the linear sections.

Download (41KB)
4. Fig. 3. Normalized 1/(C/C600)2 dependences on potential for the initial and annealed Ta/Ta2O5 (a, b); dependence of the capacitance (right axis) at E=600 mV, f=0.1 Hz and the relative concentration of donors in the oxide film (left axis) on the annealing temperature (c).

Download (43KB)
5. Fig. 4. Diffraction patterns of samples after annealing at different temperatures (a); dependence of the tantalum lattice parameter (left axis), determined for the reflection planes (110) and (200), and the width of the line (110) at half maximum on the annealing temperature of the samples (b).

Download (52KB)
6. Fig. 5. XPS spectra of the Ta4f level (a); the ratio of atomic concentrations of Ta5+/O2– in the surface layer of the samples, determined from the XPS data (b). In Fig. 5a, the vertical lines mark the positions of the lines of the Ta2O5 phase, the other lines are designated by symbols.

Download (48KB)

Copyright (c) 2024 Russian Academy of Sciences