Synthesis and structure of silver halide complexes [Ph3PCH=CH2]n[Ag2Br3]n, [Ph3PCH=CH2]n[Ag5Br6]n and [Ph3PCH2CH=CHCH2PPh3][Ag2I4]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By the interaction of silver bromide with (2-bromoethyl)- and vinyltriphenylphosphonium bromides, as well as silver iodide with but-2-ene-1,4-diyl-bis(triphenylphosphonium) diiodide in DMSO, haloargentate complexes [Ph3PCH=CH2]n[Ag2Br3]n (I), [Ph3PCH=CH2]n[Ag5Br6]n (II) and [Ph3PCH2CH=CHCH2PPh3][Ag2I4] (III) were synthesized. The obtained products were characterized by IR spectroscopy and X-ray diffraction analysis (CCDC No. 2173339 (I), 2172944 (II), 1985085 (III)). According to X-ray diffraction data, compounds I–III consist of organyltriphenylphosphonium cations with tetrahedrally coordinated phosphorus atoms and the corresponding haloargentate anions of 1D-polymeric (I, II) or non-polymeric (III) structure. The anions I and II are “cross-linked” from tetrahedral {AgBr4} fragments, while anion III – from two trigonal fragments {AgBr3}. In all the resulting complexes, the Ag centers are additionally connected to each other by argentophilic contacts with Ag···Ag distances in the range of 2.8162(12)–3.371(2) Å.

Full Text

Restricted Access

About the authors

D. P. Shevchenko

South Ural State University (National Research University)

Author for correspondence.
Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk, 454080

A. I. Zhizhina

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk, 454080

A. N. Efremova

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk, 454080

V. V. Sharutin

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk, 454080

O. K. Sharutina

South Ural State University (National Research University)

Email: Shepher56@gmail.com
Russian Federation, Chelyabinsk, 454080

References

  1. Li H.-H., Chen Z.-R., Sun L.-G. et al. // Cryst. Growth Des. 2010. V. 10. № 3. P. 1068. https://doi.org/10.1021/cg900476m
  2. Zhang Z., Niu Y., Ng S. et al. // J. Coord. Chem. 2011. V. 64. № 10. P. 1683. https://doi.org/10.1080/00958972.2011.579117
  3. Mishra S., Jeanneau E., Ledoux G. et al. // Inorg. Chem. 2014. V. 53. № 21. P. 11731. https://doi.org/10.1021/ic501963y
  4. Du H.-J., Zhang W.-L., Wang C.-H. et al. // Inorg. Chem. Commun. 2015. V. 54. P. 45. https://doi.org/10.1016/j.inoche.2015.02.005
  5. Du H.-J., Zhang W.-L., Wang C.-H. et al. // Dalton Trans. 2016. V. 45. № 6. P. 2624. https://doi.org/10.1039/C5DT04508H
  6. Wang Y.-K., Zhao L.-M., Fu Y.-Q. et al. // Cryst. Growth Des. 2018. V. 18. № 7. P. 3827. https://doi.org/10.1021/acs.cgd.8b00033
  7. Wang R.-Y., Zhang X., Yu J.-H. et al. // RSC Adv. 2018. V. 8. № 63. P. 36150. https://doi.org/10.1039/c8ra05760e
  8. Shen J., Zhang X., Kang X. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 20. P. 2488. https://doi.org/10.1002/ejic.201900258
  9. Zhu Y., Yu T., Hao P. et al. // J. Clust. Sci. 2016. V. 27. № 4. P. 1283. https://doi.org/10.1007/s10876-016-0999-6
  10. Du. H., Li Y., Xu M. et al. // J. Mol. Struct. 2017. V. 1133. P. 101. https://doi.org/10.1016/j.molstruc.2016.11.092
  11. Zhang C., Shen J., Guan Q. et al. // Solid State Sci. 2015. V. 46. P. 14. https://doi.org/10.1016/j.solidstatesciences.2015.05.009
  12. Liu M., Liang Y., Wang C.-H. et al. // J. Clust. Sci. 2015. V. 26. № 5. P. 1723. https://doi.org/10.1007/s10876-015-0870-1
  13. Yue C.-Y., Lei X.-W., Han Y.-F. et al. // Inorg. Chem. 2016. V. 55. № 23. P. 12193. https://doi.org/10.1021/acs.inorgchem.6b01770
  14. Shen Y., Zhang L., Li S. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 6. P. 826. https://doi.org/10.1002/ejic.201701284
  15. Xue Z.-Z., Wang A.-N., Wei L. et al. // CrystEngComm. 2021. V. 23. № 7. P. 1588. https://doi.org/10.1039/d0ce01642j
  16. Lei X.-W., Yue C.-Y., Wu F. et al. // Inorg. Chem. Commun. 2017. V. 77. P. 64. https://doi.org/10.1016/j.inoche.2017.01.010
  17. Zheng W., Gao Y., Chen N. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119762. https://doi.org/10.1016/j.ica.2020.119762
  18. Gao Y., Chen N., Tian Y. et al. // Inorg. Chem. 2021. V. 60. № 6. P. 3761. https://doi.org/10.1021/acs.inorgchem.0c03528
  19. Folda A., Scalcon V., Ghazzali M. et al. // J. Inorg. Biochem. 2015. V. 153. P. 346. https://doi.org/10.1016/j.jinorgbio.2015.08.030
  20. Wang. F., Wang Y.-T., Yu H. et al. // Inorg. Chem. 2016. V. 55. № 18. P. 9417. https://doi.org/10.1021/acs.inorgchem.6b01688
  21. Шевченко Д.П., Ефремов А.Н., Шарутин В.В. и др. // Вестник ЮУрГУ. Сер. Химия. 2022. Т. 14. № 4. С. 79. https://doi.org/10.14529/chem220408
  22. Liu Y.-F., Lin M., Huang C.-C. et al. // Acta Crystallogr. E: Crystallogr. Commun. 2007. V. E63. № 12. P. m2970. https://doi.org/10.1107/S1600536807048441
  23. Bernd M.A., Bauer E.B., Oberkofler J. et al. // Dalton Trans. 2020. V. 49. № 40. P. 14106. https://doi.org/10.1039/D0DT02598D
  24. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Коорд. химия. 2016. Т. 42. № 2. С. 110. https://doi.org/10.7868/S0132344X16020079
  25. Qiao Y.-Z., Fu W.-Z., Yue J.-M. et al. // CrystEngComm. 2012. V. 14. № 9. P. 3241. https://doi.org/10.1039/c2ce06687d
  26. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. неорган. химии. 2016. Т. 61. № 4. С. 472. https://doi.org/10.7868/S0044457X16040176
  27. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. общ. химии. 2016. Т. 86. № 7. С. 1177.
  28. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Бутлеровск. сообщ. 2014. Т. 39. № 10. С. 54.
  29. Wang R.-Y., Zhang X., Huo Q.-S. et al. // RSC Adv. 2017. V. 7. № 31. P. 19073. https://doi.org/10.1039/C6RA27510A
  30. Li H.-H., Chen Z.-R., Li J.-Q. et al. // Eur. J. Inorg. Chem. 2006. V. 2006. № 12. P. 2447. https://doi.org/10.1002/ejic.200600057
  31. Брауэр Г., Вайгель Ф., Кюнль Х. и др. Руководство по неорганическому синтезу: В 6-ти томах. Т. 4 / Пер. с нем. Добрыниной Н.А., Мазо Г.Н., Санталовой Н.А., Троянова С.И. М.: Мир, 1985. 447 с.
  32. Беллами Л. Инфракрасные спектры сложных молекул / Пер. с англ. Акимова В.М. и др. Под ред. Пентина Ю.А. М.: Изд-во иностранной литературы, 1963. 590 с.
  33. Преч E., Бюльман Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных / Пер. с англ. Тарасевича Б.Н. М.: Мир, 2006. 440 с.
  34. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  35. Yu T., Shen J., Fu Y. et al. // CrystEngComm. 2014. V. 16. № 24. P. 5280. https://doi.org/10.1039/C3CE42579G
  36. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of complex I (hydrogen atoms are not shown) (a); fragment of the polymer chain [Ag2Br3 (b).

Download (393KB)
3. Fig. 2. Structure of complex II (hydrogen atoms are not shown) (a); view inside the tube [Ag5Br6 (µ5-Br ions are not shown) (b); fragment of a polymer tube-shaped chain [Ag5Br6 (c).

Download (174KB)
4. Fig. 3. Structure of complex III (hydrogen atoms are not shown).

Download (139KB)
5. Fig. 4. Crystal organization of complex I.

Download (472KB)
6. Fig. 5. Crystal organization of complex II.

Download (278KB)
7. Fig. 6. Crystal organization of complex III.

Download (142KB)

Copyright (c) 2024 Russian Academy of Sciences