Architectonics of Ubiquitin Chains

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ubiquitination, one of the most common posttranslational modifications of proteins, has a significant impact on its functions, such as stability, activity and cellular localization. Disorders in the processes of ubiquitination and deubiquitination are associated with various oncological and neurodegenerative diseases. The complexity of ubiquitin signaling – monoubiquitination and polyubiquitination with different lengths and types of interconnections between ubiquitins – determines their versatility and ability to regulate hundreds of different cellular processes. Advanced biochemical, mass spectrometric and computational methods are required for in-depth understanding of the mechanisms of assembly and disassembly, detection of ubiquitin chains and their signal transmission. Recent scientific achievements make it possible to identify the ubiquitination of proteins and the structure of ubiquitin chains, however, there are still a considerable number of unresolved issues in this area. Current review claims for a detailed analysis of the current understanding of the architectonics of the ubiquitin chains.

Full Text

Restricted Access

About the authors

K. A. Ivanova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: anna.kudriaeva@ibch.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

A. A. Belogurov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: alexey.belogurov.jr@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

A. A. Kudriaeva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: anna.kudriaeva@ibch.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

References

  1. Kudriaeva A.A., Belogurov A.A. // Biochemistry (Moscow). 2019. V. 84. P. 159–192. https://doi.org/10.1134/S0006297919140104
  2. Kudriaeva A.A., Sokolov A.V., Belogurov A.A. // Act. Nat. 2020. V. 12. P. 18–32. https://doi.org/10.32607/actanaturae.10936
  3. Kudriaeva A.A., Lipkin V.M., Belogurov A.A. // Dokl. Biochem. Biophys. 2020. V. 493. P. 193–197. https://doi.org/10.1134/S1607672920040079
  4. Bacheva A.V., Gotmanova N.N., Belogurov A.A., Kudriaeva A.A. // Biochemistry (Moscow). 2021. V. 86. P. S71–S95. https://doi.org/10.1134/S0006297921140066
  5. Komander D., Rape M. // Annu. Rev. Biochem. 2012. V. 81. P. 203–229. https://doi.org/10.1146/annurev-biochem-060310170328
  6. Yau R., Rape M. // Nat. Cell Biol. 2016. V. 18. P. 579– 586. https://doi.org/10.1038/ncb3358
  7. Kudriaeva A.A., Livneh I., Baranov M.S., Ziganshin R.H., Tupikin A.E., Zaitseva S.O., Kabilov M.R., Ciechanover A., Belogurov A.A. // Cell. Chem. Biol. 2021. V. 28. P. 1192–1205. https://doi.org/10.1016/j.chembiol.2021.02.009
  8. Huang Q., Zhang X. // Proteomics. 2020. V. 20. P. 1900100. https://doi.org/10.1002/pmic.201900100
  9. Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., Gygi S.P. // Nat. Biotechnol. 2003. V. 21. P. 921–926. https://doi.org/10.1038/nbt849
  10. Akimov V., Henningsen J., Hallenborg P., Rigbolt K.T.G., Jensen S.S., Nielsen M.M., Kratchmarova I., Blagoev B. // J. Proteome Res. 2014. V. 13. P. 4192–4204. https://doi.org/10.1021/pr500549h
  11. Denis N.J., Vasilescu J., Lambert J., Smith J.C., Figeys D. // Proteomics. 2007. V. 7. P. 868–874. https://doi.org/10.1002/pmic.200600410
  12. Newton K., Matsumoto M.L., Wertz I.E., Kirkpatrick D.S., Lill J.R., Tan J., Dugger D., Gordon N., Sidhu S.S., Fellouse F.A., Komuves L., French D.M., Ferrando R.E., Lam C., Compaan D., Yu C., Bosanac I., Hymowitz S.G., Kelley R.F., Dixit V.M. // Cell. 2008. V. 134. P. 668–678. https://doi.org/10.1016/j.cell.2008.07.039
  13. Hjerpe R., Aillet F., Lopitz-Otsoa F., Lang V., England P., Rodriguez M.S. // EMBO Rep. 2009. V. 10. P. 1250–1258. https://doi.org/10.1038/embor.2009.192
  14. Xolalpa W., Mata-Cantero L., Aillet F., Rodriguez M.S. // Methods Mol. Biol. 2016. P. 161–175. https://doi.org/10.1007/978-1-4939-3756-1_8
  15. Mattern M., Sutherland J., Kadimisetty K., Barrio R., Rodriguez M.S. // Trends Biochem. Sci. 2019. V. 44. P. 599–615. https://doi.org/10.1016/j.tibs.2019.01.011
  16. Kadimisetty K., Sheets K.J., Gross P.H., Zerr M.J., Ouazia D. // Methods Mol. Biol. 2021. P. 185–202. https://doi.org/10.1007/978-1-0716-1665-9_10
  17. He W., Wei L., Zou Q. // Brief. Funct. Genomics. 2019. V. 18. P. 220–229. https://doi.org/10.1093/bfgp/ely039
  18. Haakonsen D.L., Rape M. // Trends Cell Biol. 2019. V. 29. P. 704–716. https://doi.org/10.1016/j.tcb.2019.06.003
  19. Hua X., Chu G.-C., Li Y.-M. // Chembiochem. 2020. V. 21. P. 3313–3318. https://doi.org/10.1002/cbic.202000295
  20. Meyer H.-J., Rape M. // Cell. 2014. V. 157. P. 910–921. https://doi.org/10.1016/j.cell.2014.03.037
  21. Fricker L.D. // J. Am. Soc. Mass Spectrom. 2015. V. 26. P. 1981–1991. https://doi.org/10.1007/s13361-015-1231-x
  22. Kim M.-S., Zhong J., Pandey A. // Proteomics. 2016. V. 16. P. 700–714. https://doi.org/10.1002/pmic.201500355
  23. Ohtake F., Saeki Y., Ishido S., Kanno J., Tanaka K. // Mol. Cell. 2016. V. 64. P. 251–266. https://doi.org/10.1016/j.molcel.2016.09.014
  24. Phu L., Izrael-Tomasevic A., Matsumoto M.L., Bustos D., Dynek J.N., Fedorova A.V., Bakalarski C.E., Arnott D., Deshayes K., Dixit V.M., Kelley R.F., Vucic D., Kirkpatrick D.S. // Mol. Cell Proteomics. 2011. V. 10. P. M110.003756. https://doi.org/10.1074/mcp.M110.003756
  25. Xu P., Duong D.M., Seyfried N.T., Cheng D.., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. // Cell. 2009. V. 137. P. 133–145. https://doi.org/10.1016/j.cell.2009.01.041
  26. Ohtake F., Tsuchiya H., Tanaka K., Saeki Y. // Methods Enzymol. 2019. V. 618. P. 105–133. https://doi.org/10.1016/bs.mie.2018.12.019
  27. Swatek K.N., Usher J.L., Kueck A.F., Gladkova C., Mevissen T.E.T., Pruneda J.N., Skern T., Komander D. // Nature. 2019. V. 572. P. 533–537. https://doi.org/10.1038/s41586-019-1482-y
  28. Kaiho-Soma A., Akizuki Y., Igarashi K., Endo A., Shoda T., Kawase Y., Demizu Y., Naito M., Saeki Y., Tanaka K., Ohtake F. // Mol. Cell. 2021. V. 81. P. 1411–1424.e7. https://doi.org/10.1016/j.molcel.2021.01.023
  29. Akizuki Y., Morita M., Mori Y., Kaiho-Soma A., Dixit S., Endo A., Shimogawa M., Hayashi G., Naito M., Okamoto A., Tanaka K., Saeki Y., Ohtake F. // Nat. Chem. Biol. 2023. V. 19. P. 311–322. https://doi.org/10.1038/s41589-022-01178-1
  30. Geis-Asteggiante L., Lee A.E., Fenselau C. // Methods Enzymol. 2019. V. 626. P. 323–346. https://doi.org/10.1016/bs.mie.2019.06.025
  31. Jülg J., Edbauer D., Behrends C. // EMBO Rep. 2023. V. 24. P. e55895. https://doi.org/10.15252/embr.202255895
  32. Yau R.G., Doerner K., Castellanos E.R., Haakonsen D.L., Werner A., Wang N., Yang X.W., Martinez-Martin N., Matsumoto M.L., Dixit V.M., Rape M. // Cell. 2017. V. 171. P. 918–933.e20. https://doi.org/10.1016/j.cell.2017.09.040
  33. Deol K.K., Crowe S.O., Du J., Bisbee H.A., Guenette R.G., Strieter E.R. // Mol. Cell. 2020. V. 80. P. 796–809.e9. https://doi.org/10.1016/j.molcel.2020.10.017
  34. Waltho A., Sommer T. // Methods Mol. Biol. 2023. V. 2602. P. 19–38. https://doi.org/10.1007/978-1-0716-2859-1_2
  35. Lee A.E., Geis-Asteggiante L., Dixon E.K., Kim Y., Kashyap T.R., Wang Y., Fushman D., Fenselau C. // J. Mass Spectrom. 2016. V. 51. P. 315–321. https://doi.org/10.1002/jms.3759
  36. Crowe S.O., Rana A.S.J.B., Deol K.K., Ge Y., Strieter E.R. // Anal. Chem. 2017. V. 89. P. 4428–4434. https://doi.org/10.1021/acs.analchem.6b03675
  37. Sparks R.P., Fratti R. // Methods Mol. Biol. 2019. V. 1860. P. 191–198. https://doi.org/10.1007/978-1-4939-8760-3_11
  38. Song A., Hazlett Z., Abeykoon D., Dortch J., Dillon A., Curtiss J., Martinez S.B., Hill C.P., Yu C., Huang L., Fushman D., Cohen R.E., Yao T. // Elife. 2021. V. 10. P. e72798. https://doi.org/10.7554/eLife.72798
  39. Seger C. // Wien. Med. Wochenschr. 2012. V. 162. P. 499–504. https://doi.org/10.1007/s10354-012-0147-3
  40. Pluska L., Jarosch E., Zauber H., Kniss A., Waltho A., Bagola K., von Delbrück M., Löhr F., Schulman B.A., Selbach M., Dötsch V., Sommer T. // EMBO J. 2021. V. 40. P. e106094. https://doi.org/10.15252/embj.2020106094
  41. Ordureau A., Sarraf S.A., Duda D.M., Heo J.-M., Jedrychowski M.P., Sviderskiy V.O., Olszewski J.L., Koerber J.T., Xie T., Beausoleil S.A., Wells J.A., Gygi S.P., Schulman B.A., Harper J.W. // Mol. Cell. 2014. V. 56. P. 360–375. https://doi.org/10.1016/j.molcel.2014.09.007
  42. Durcan T.M., Tang M.Y., Pérusse J.R., Dashti E.A., Aguileta M.A., McLelland G.-L., Gros P., Shaler T.A., Faubert D., Coulombe B., Fon E.A. // EMBO J. 2014. V. 33. P. 2473–2491. https://doi.org/10.15252/embj.201489729
  43. Cunningham C.N., Baughman J.M., Phu L., Tea J.S., Yu C., Coons M., Kirkpatrick D.S., Bingol B., Corn J.E. // Nat. Cell Biol. 2015. V. 17. P. 160–169. https://doi.org/10.1038/ncb3097
  44. Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., Harper J.W., Gygi S.P. // Mol. Cell. 2011. V. 44. P. 325– 340. https://doi.org/10.1016/j.molcel.2011.08.025
  45. Wagner S.A., Beli P., Weinert B.T., Nielsen M.L., Cox J., Mann M., Choudhary C. // Mol. Cell Proteomics. 2011. V. 10. P. M111.013284. https://doi.org/10.1074/mcp.M111.013284
  46. Elia A.E.H., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. // Mol. Cell. 2015. V. 59. P. 867– 881. https://doi.org/10.1016/j.molcel.2015.05.006
  47. Akutsu M., Dikic I., Bremm A. // J. Cell Sci. 2016. V. 129. P. 875–880. https://doi.org/10.1242/jcs.183954
  48. Matsumoto M.L., Wickliffe K.E., Dong K.C., Yu C., Bosanac I., Bustos D., Phu L., Kirkpatrick D.S., Hymowitz S.G., Rape M., Kelley R.F., Dixit V.M. // Mol. Cell. 2010. V. 39. P. 477–484. https://doi.org/10.1016/j.molcel.2010.07.001
  49. Rana A.S.J.B., Ge Y., Strieter E.R. // J. Proteome Res. 2017. V. 16. P. 3363–3369. https://doi.org/10.1021/acs.jproteome.7b00381
  50. van Huizen M., Kikkert M. // Front. Cell Dev. Biol. 2020. V. 7. P. 1–8. https://doi.org/10.3389/fcell.2019.00392
  51. Qin Y., Zhou M.-T., Hu M.-M., Hu Y.-H., Zhang J., Guo L., Zhong B., Shu H.-B. // PLoS Pathog. 2014. V. 10. P. e1004358. https://doi.org/10.1371/journal.ppat.1004358
  52. Jin S., Tian S., Chen Y., Zhang C., Xie W., Xia X., Cui J., Wang R.-F. // EMBO J. 2016. V. 35. P. 866–880. https://doi.org/10.15252/embj.201593596
  53. Gatti M., Pinato S., Maiolica A., Rocchio F., Prato M.G., Aebersold R., Penengo L. // Cell Rep. 2015. V. 10. P. 226–238. https://doi.org/10.1016/j.celrep.2014.12.021
  54. Sparrer K.M.J., Gableske S., Zurenski M.A., Parker Z.M., Full F., Baumgart G.J., Kato J., Pacheco-Rodriguez G., Liang C., Pornillos O., Moss J., Vaughan M., Gack M.U. // Nat. Microbiol. 2017. V. 2. P. 1543–1557. https://doi.org/10.1038/s41564-017-0017-2
  55. Wang Q., Liu X., Cui Y., Tang Y., Chen W., Li S., Yu H., Pan Y., Wang C. // Immunity. 2014. V. 41. P. 919–933. https://doi.org/10.1016/j.immuni.2014.11.011
  56. Zhao C., Jia M., Song H., Yu Z., Wang W., Li Q., Zhang L., Zhao W., Cao X. // Cell Rep. 2017. V. 21. P. 1613–1623. https://doi.org/10.1016/j.celrep.2017.10.020
  57. Liu H., Li M., Song Y., Xu W. // Front. Immunol. 2018. V. 9. P. 2479. https://doi.org/10.3389/fimmu.2018.02479
  58. Xue B., Li H., Guo M., Wang J., Xu Y., Zou X., Deng R., Li G., Zhu H. // J. Virol. 2018. V. 92. P. e00321-18. https://doi.org/10.1128/JVI.00321-18
  59. Jin S., Tian S., Luo M., Xie W., Liu T., Duan T., Wu Y., Cui J. // Mol. Cell. 2017. V. 68. P. 308.e4–322.e4. https://doi.org/10.1016/j.molcel.2017.09.005
  60. He X., Zhu Y., Zhang Y., Geng Y., Gong J., Geng J., Zhang P., Zhang X., Liu N., Peng Y., Wang C., Wang Y., Liu X., Wan L., Gong F., Wei C., Zhong H. // EMBO J. 2019. V. 38. P. e100978. https://doi.org/10.15252/embj.2018100978
  61. Chen Y., Wang L., Jin J., Luan Y., Chen C., Li Y., Chu H., Wang X., Liao G., Yu Y., Teng H., Wang Y., Pan W., Fang L., Liao L., Jiang Z., Ge X., Li B., Wang P. // J. Exp. Med. 2017. V. 214. P. 991–1010. https://doi.org/10.1084/jem.20161387
  62. Sun H., Zhang Q., Jing Y.-Y., Zhang M., Wang H.-Y., Cai Z., Liuyu T., Zhang Z.-D., Xiong T.-C., Wu Y., Zhu Q.-Y., Yao J., Shu H.-B., Lin D., Zhong B. // Nat. Commun. 2017. V. 8. P. 15534. https://doi.org/10.1038/ncomms15534
  63. Imai J., Koganezawa Y., Tuzuki H., Ishikawa I., Sakai T. // Cell Biol. Int. 2019. V. 43. P. 1393–1406. https://doi.org/10.1002/cbin.11186
  64. Kristariyanto Y.A., Choi S.-Y., Rehman S.A.A., Ritorto M.S., Campbell D.G., Morrice N.A., Toth R., Kulathu Y. // Biochem. J. 2015. V. 467. P. 345–352. https://doi.org/10.1042/BJ20141502
  65. Michel M.A., Elliott P.R., Swatek K.N., Simicek M., Pruneda J.N., Wagstaff J.L., Freund S.M.V., Komander D. // Mol. Cell. 2015. V. 58. P. 95–109. https://doi.org/10.1016/j.molcel.2015.01.042
  66. Yu Z., Chen T., Li X., Yang M., Tang S., Zhu X., Gu Y., Su X., Xia M., Li W., Zhang X., Wang Q., Cao X., Wang J. // Elife. 2016. V. 5. P. e14087. https://doi.org/10.7554/eLife.14087
  67. Fei C., Li Z., Li C., Chen Y., Chen Z., He X., Mao L., Wang X., Zeng R., Li L. // Mol. Cell. Biol. 2013. V. 33. P. 4095–4105. https://doi.org/10.1128/MCB.00418-13
  68. Kristariyanto Y.A., Abdul Rehman S.A., Campbell D.G., Morrice N.A., Johnson C., Toth R., Kulathu Y. // Mol. Cell. 2015. V. 58. P. 83–94. https://doi.org/10.1016/j.molcel.2015.01.041
  69. Licchesi J.D.F., Mieszczanek J., Mevissen T.E.T., Rutherford T.J., Akutsu M., Virdee S., El Oualid F., Chin J.W., Ovaa H., Bienz M., Komander D. // Nat. Struct. Mol. Biol. 2011. V. 19. P. 62–71. https://doi.org/10.1038/nsmb.2169
  70. Mevissen T.E.T., Hospenthal M.K., Geurink P.P., Elliott P.R., Akutsu M., Arnaudo N., Ekkebus R., Kulathu Y., Wauer T., El Oualid F., Freund S.M.V., Ovaa H., Komander D. // Cell. 2013. V. 154. P. 169– 184. https://doi.org/10.1016/j.cell.2013.05.046
  71. Virdee S., Ye Y., Nguyen D.P., Komander D., Chin J.W. // Nat. Chem. Biol. 2010. V. 6. P. 750–757. https://doi.org/10.1038/nchembio.426
  72. Tran H., Hamada F., Schwarz-Romond T., Bienz M. // Genes Dev. 2008. V. 22. P. 528–542. https://doi.org/10.1101/gad.463208
  73. Besche H.C., Sha Z., Kukushkin N.V., Peth A., Hock E.-M., Kim W., Gygi S., Gutierrez J.A., Liao H., Dick L., Goldberg A.L. // EMBO J. 2014. V. 33. P. 1159– 1176. https://doi.org/10.1002/embj.201386906
  74. Jin J., Xie X., Xiao Y., Hu H., Zou Q., Cheng X., Sun S.-C. // Nat. Immunol. 2016. V. 17. P. 259–268. https://doi.org/10.1038/ni.3347
  75. Kim J.-B., Kim S.Y., Kim B.M., Lee H., Kim I., Yun J., Jo Y., Oh T., Jo Y., Chae H.-D., Shin D.Y. // J. Biol. Chem. 2013. V. 288. P. 12014–12021. https://doi.org/10.1074/jbc.M112.436113
  76. Yuan W.-C., Lee Y.-R., Lin S.-Y., Chang L.-Y., Tan Y.P., Hung C.-C., Kuo J.-C., Liu C.-H., Lin M.-Y., Xu M., Chen Z.J., Chen R.-H. // Mol. Cell. 2014. V. 54. P. 586–600. https://doi.org/10.1016/j.molcel.2014.03.035
  77. Kwon Y.T., Ciechanover A. // Trends Biochem. Sci. 2017. V. 42. P. 873–886. https://doi.org/10.1016/j.tibs.2017.09.002
  78. Sorada T., Morimoto D., Walinda E., Sugase K. // Biochem. Biophys. Res. Commun. 2021. V. 562. P. 94–99. https://doi.org/10.1016/j.bbrc.2021.05.031
  79. Pickart C.M., Fushman D. // Curr. Opin. Chem. Biol. 2004. V. 8. P. 610–616. https://doi.org/10.1016/j.cbpa.2004.09.009
  80. Yang W.-L., Wang J., Chan C.-H., Lee S.-W., Campos A.D., Lamothe B., Hur L., Grabiner B.C., Lin X., Darnay B.G., Lin H.-K. // Science. 2009. V. 325. P. 1134–1138. https://doi.org/10.1126/science.1175065
  81. Lim J., Yue Z. // Dev. Cell. 2015. V. 32. P. 491–501. https://doi.org/10.1016/j.devcel.2015.02.002
  82. Ohtake F., Tsuchiya H. // J. Biochem. 2017. V. 161. P. 125–133. https://doi.org/10.1093/jb/mvw088
  83. Swatek K.N., Komander D. // Cell Res. 2016. V. 26. P. 399–422. https://doi.org/10.1038/cr.2016.39
  84. Uckelmann M., Sixma T.K. // DNA Repair (Amst). 2017. V. 56. P. 92–101. https://doi.org/10.1016/j.dnarep.2017.06.011
  85. Nowsheen S., Aziz K., Aziz A., Deng M., Qin B., Luo K., Jeganathan K.B., Zhang H., Liu T., Yu J., Deng Y., Yuan J., Ding W., van Deursen J.M., Lou Z. // Nat. Cell Biol. 2018. V. 20. P. 455–464. https://doi.org/10.1038/s41556-018-0071-x
  86. Maspero E., Valentini E., Mari S., Cecatiello V., Soffientini P., Pasqualato S., Polo S. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 696–701. https://doi.org/10.1038/nsmb.2566
  87. Hospenthal M.K., Freund S.M.V., Komander D. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 555–565. https://doi.org/10.1038/nsmb.2547
  88. Valkevich E.M., Sanchez N.A., Ge Y., Strieter E.R. // Biochemistry. 2014. V. 53. P. 4979–4989. https://doi.org/10.1021/bi5006305
  89. Paudel P., Banos C.M., Liu Y., Zhuang Z. // ACS Chem. Biol. 2023. V. 18. P. 837–847. https://doi.org/10.1021/acschembio.2c00898
  90. Wang Y.S., Wu K.P., Jiang H.K., Kurkute P., Chen R.H. // Molecules. 2020. V. 25. P. 5200. https://doi.org/10.3390/molecules25215200
  91. Ohtake F. // Trends Biochem Sci. 2020. V. 45. P. 820821. https://doi.org/10.1016/j.tibs.2020.04.008
  92. Sun M., Zhang X. // Cell Biosci. 2022. V. 12. P. 126. https://doi.org/10.1186/s13578-022-00870-y
  93. Di Meo A., Pasic M.D., Yousef G.M. // Oncotarget. 2016. V. 7. P. 52460–52474. https://doi.org/10.18632/oncotarget.8931
  94. Neagu A.N., Jayathirtha M., Baxter E., Donnelly M., Petre B.A., Darie C.C. // Molecules. 2022. V. 27. P. 2411. https://doi.org/10.3390/molecules27082411
  95. Singh G., Kumar S., Das R. // Anal Chem. 2023. V. 95. P. 10061–10067. https://doi.org/10.1021/acs.analchem.3c01425

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) – This method uses the introduction of mutations into ubiquitin, followed by application to PAAG and mass spectrometry to detect the formation of branched chains (Table 1); (b) – a variant of detection of ubiquitin chains using an attached epitope tag and a cleavage site, followed by treatment with a protease and immunoblotting is presented (Table 1); (c) – a scheme of the immunoprecipitation method is shown, in which the presence of branched chains is detected by sequential immunoblotting, LC and MS (Table 1).

Download (146KB)
3. Fig. 2. (a) – In this method, deubiquitinases are added to the sample with the substrate, resulting in the cleavage of ubiquitin chains from the substrate with their subsequent visualization by mass spectrometry; (b–d) – variants of mass spectrometric approaches are presented, which use cleavage with trypsin (b, c) and separation of ubiquitin chains depending on their branching pattern (b–d) (Table 1). Partially borrowed from works [19], [82], [90–94].

Download (226KB)
4. Fig. 3. (a) – In this method, ubiquitination with radioactively labeled ubiquitin occurs, followed by application to PAAG, cutting out from the gel, treatment with trypsin and separation by mass spectrometry in accordance with the isotopic composition; (b) – a combination of LC and tandem mass spectrometry methods is presented, as a result of which it becomes possible to identify ubiquitin chains; (c) – in this case, a protein label GST is attached to fluorescently labeled ubiquitin chains, the sample is then applied to PAAG and detected by fluorescence scanning (Table 1). Partially borrowed from the work [95].

Download (204KB)
5. Fig. 4. (a) Scheme of the PRIME method used in the work of Kudriaeva et al. [7]. Simultaneous expression of resorufin ligase and the protein of interest, as well as treatment of cells with resorufin, are shown; (b) scheme of ubiquitin stability profiling in mammals [7]. Stable HEK293T cell lines with simultaneous expression of LAP-UbK0 variants with R to K substitution and TagBFP-LplA(AAG), mixed in equal proportions, were treated with resorufin, incubated with DMSO or proteasome inhibitor for 2 h, and then fractionated using flow cytometry. Cell fractions with different ratios of TagBFP and resorufin fluorescence were subjected to PCR to amplify the genomic cluster encoding the corresponding ubiquitin variant, and then NGS sequencing. A graph of the prevalence of ubiquitin variants versus their stability is shown. Abbreviations: gDNA – genomic DNA.

Download (457KB)
6. Fig. 5. Crystal structure of K6-linked diubiquitin as an example of homotypic K6 chains (PDB: 2XK5). The isopeptide bond between the K6 residue of proximal ubiquitin and the C-terminus of axial ubiquitin is shown.

Download (150KB)
7. Fig. 6. Crystal structure of K11-linked diubiquitin as an example of homotypic K11 chains (PDB: 2MBQ). The isopeptide linkage between the K11 residue of axial ubiquitin and the C-terminus of proximal ubiquitin is shown.

Download (145KB)
8. Fig. 7. Crystal structure of K27-linked diubiquitin (PDB: 5J8P) as an example of homotypic K27 chains. The K27 residue of axial ubiquitin and the C-terminus of proximal ubiquitin are shown.

Download (137KB)
9. Fig. 8. Crystal structure of K29-linked diubiquitin (PDB: 4S22) as an example of homotypic K29 chains. The K29 residue of axial ubiquitin and the C-terminus of proximal ubiquitin are shown.

Download (119KB)
10. Fig. 9. Crystal structure of K33-linked diubiquitin (PDB: 4XYZ) as an example of homotypic K33 chains. The isopeptide linkage between the K33 residue of axial ubiquitin and the C-terminus of proximal ubiquitin is shown.

Download (133KB)
11. Fig. 10. Crystal structure of K48-linked diubiquitin (PDB: 3AUL) as an example of homotypic K48 chains. The K48 residue of axial ubiquitin and the C-terminus of proximal ubiquitin are shown.

Download (153KB)
12. Fig. 11. Crystal structure of K63-linked diubiquitin (PDB: 2JF5) as an example of homotypic K63 chains. The K63 residue of axial ubiquitin and the C-terminus of proximal ubiquitin are shown.

Download (108KB)
13. Rice. 12. Branched K11/K48 (PDB: 6OQ1) (a) and K48/K63 chains (PDB: 7NPO) (b).

Download (184KB)

Copyright (c) 2024 Russian Academy of Sciences