Architectonics of Ubiquitin Chains
- Authors: Ivanova K.A.1, Belogurov A.A.1, Kudriaeva A.A.1
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 50, No 4 (2024)
- Pages: 379-397
- Section: Articles
- URL: https://innoscience.ru/0132-3423/article/view/670826
- DOI: https://doi.org/10.31857/S0132342324040038
- EDN: https://elibrary.ru/MXJACY
- ID: 670826
Cite item
Abstract
Ubiquitination, one of the most common posttranslational modifications of proteins, has a significant impact on its functions, such as stability, activity and cellular localization. Disorders in the processes of ubiquitination and deubiquitination are associated with various oncological and neurodegenerative diseases. The complexity of ubiquitin signaling – monoubiquitination and polyubiquitination with different lengths and types of interconnections between ubiquitins – determines their versatility and ability to regulate hundreds of different cellular processes. Advanced biochemical, mass spectrometric and computational methods are required for in-depth understanding of the mechanisms of assembly and disassembly, detection of ubiquitin chains and their signal transmission. Recent scientific achievements make it possible to identify the ubiquitination of proteins and the structure of ubiquitin chains, however, there are still a considerable number of unresolved issues in this area. Current review claims for a detailed analysis of the current understanding of the architectonics of the ubiquitin chains.
Full Text

About the authors
K. A. Ivanova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: anna.kudriaeva@ibch.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. A. Belogurov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alexey.belogurov.jr@gmail.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. A. Kudriaeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: anna.kudriaeva@ibch.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
References
- Kudriaeva A.A., Belogurov A.A. // Biochemistry (Moscow). 2019. V. 84. P. 159–192. https://doi.org/10.1134/S0006297919140104
- Kudriaeva A.A., Sokolov A.V., Belogurov A.A. // Act. Nat. 2020. V. 12. P. 18–32. https://doi.org/10.32607/actanaturae.10936
- Kudriaeva A.A., Lipkin V.M., Belogurov A.A. // Dokl. Biochem. Biophys. 2020. V. 493. P. 193–197. https://doi.org/10.1134/S1607672920040079
- Bacheva A.V., Gotmanova N.N., Belogurov A.A., Kudriaeva A.A. // Biochemistry (Moscow). 2021. V. 86. P. S71–S95. https://doi.org/10.1134/S0006297921140066
- Komander D., Rape M. // Annu. Rev. Biochem. 2012. V. 81. P. 203–229. https://doi.org/10.1146/annurev-biochem-060310170328
- Yau R., Rape M. // Nat. Cell Biol. 2016. V. 18. P. 579– 586. https://doi.org/10.1038/ncb3358
- Kudriaeva A.A., Livneh I., Baranov M.S., Ziganshin R.H., Tupikin A.E., Zaitseva S.O., Kabilov M.R., Ciechanover A., Belogurov A.A. // Cell. Chem. Biol. 2021. V. 28. P. 1192–1205. https://doi.org/10.1016/j.chembiol.2021.02.009
- Huang Q., Zhang X. // Proteomics. 2020. V. 20. P. 1900100. https://doi.org/10.1002/pmic.201900100
- Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., Gygi S.P. // Nat. Biotechnol. 2003. V. 21. P. 921–926. https://doi.org/10.1038/nbt849
- Akimov V., Henningsen J., Hallenborg P., Rigbolt K.T.G., Jensen S.S., Nielsen M.M., Kratchmarova I., Blagoev B. // J. Proteome Res. 2014. V. 13. P. 4192–4204. https://doi.org/10.1021/pr500549h
- Denis N.J., Vasilescu J., Lambert J., Smith J.C., Figeys D. // Proteomics. 2007. V. 7. P. 868–874. https://doi.org/10.1002/pmic.200600410
- Newton K., Matsumoto M.L., Wertz I.E., Kirkpatrick D.S., Lill J.R., Tan J., Dugger D., Gordon N., Sidhu S.S., Fellouse F.A., Komuves L., French D.M., Ferrando R.E., Lam C., Compaan D., Yu C., Bosanac I., Hymowitz S.G., Kelley R.F., Dixit V.M. // Cell. 2008. V. 134. P. 668–678. https://doi.org/10.1016/j.cell.2008.07.039
- Hjerpe R., Aillet F., Lopitz-Otsoa F., Lang V., England P., Rodriguez M.S. // EMBO Rep. 2009. V. 10. P. 1250–1258. https://doi.org/10.1038/embor.2009.192
- Xolalpa W., Mata-Cantero L., Aillet F., Rodriguez M.S. // Methods Mol. Biol. 2016. P. 161–175. https://doi.org/10.1007/978-1-4939-3756-1_8
- Mattern M., Sutherland J., Kadimisetty K., Barrio R., Rodriguez M.S. // Trends Biochem. Sci. 2019. V. 44. P. 599–615. https://doi.org/10.1016/j.tibs.2019.01.011
- Kadimisetty K., Sheets K.J., Gross P.H., Zerr M.J., Ouazia D. // Methods Mol. Biol. 2021. P. 185–202. https://doi.org/10.1007/978-1-0716-1665-9_10
- He W., Wei L., Zou Q. // Brief. Funct. Genomics. 2019. V. 18. P. 220–229. https://doi.org/10.1093/bfgp/ely039
- Haakonsen D.L., Rape M. // Trends Cell Biol. 2019. V. 29. P. 704–716. https://doi.org/10.1016/j.tcb.2019.06.003
- Hua X., Chu G.-C., Li Y.-M. // Chembiochem. 2020. V. 21. P. 3313–3318. https://doi.org/10.1002/cbic.202000295
- Meyer H.-J., Rape M. // Cell. 2014. V. 157. P. 910–921. https://doi.org/10.1016/j.cell.2014.03.037
- Fricker L.D. // J. Am. Soc. Mass Spectrom. 2015. V. 26. P. 1981–1991. https://doi.org/10.1007/s13361-015-1231-x
- Kim M.-S., Zhong J., Pandey A. // Proteomics. 2016. V. 16. P. 700–714. https://doi.org/10.1002/pmic.201500355
- Ohtake F., Saeki Y., Ishido S., Kanno J., Tanaka K. // Mol. Cell. 2016. V. 64. P. 251–266. https://doi.org/10.1016/j.molcel.2016.09.014
- Phu L., Izrael-Tomasevic A., Matsumoto M.L., Bustos D., Dynek J.N., Fedorova A.V., Bakalarski C.E., Arnott D., Deshayes K., Dixit V.M., Kelley R.F., Vucic D., Kirkpatrick D.S. // Mol. Cell Proteomics. 2011. V. 10. P. M110.003756. https://doi.org/10.1074/mcp.M110.003756
- Xu P., Duong D.M., Seyfried N.T., Cheng D.., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. // Cell. 2009. V. 137. P. 133–145. https://doi.org/10.1016/j.cell.2009.01.041
- Ohtake F., Tsuchiya H., Tanaka K., Saeki Y. // Methods Enzymol. 2019. V. 618. P. 105–133. https://doi.org/10.1016/bs.mie.2018.12.019
- Swatek K.N., Usher J.L., Kueck A.F., Gladkova C., Mevissen T.E.T., Pruneda J.N., Skern T., Komander D. // Nature. 2019. V. 572. P. 533–537. https://doi.org/10.1038/s41586-019-1482-y
- Kaiho-Soma A., Akizuki Y., Igarashi K., Endo A., Shoda T., Kawase Y., Demizu Y., Naito M., Saeki Y., Tanaka K., Ohtake F. // Mol. Cell. 2021. V. 81. P. 1411–1424.e7. https://doi.org/10.1016/j.molcel.2021.01.023
- Akizuki Y., Morita M., Mori Y., Kaiho-Soma A., Dixit S., Endo A., Shimogawa M., Hayashi G., Naito M., Okamoto A., Tanaka K., Saeki Y., Ohtake F. // Nat. Chem. Biol. 2023. V. 19. P. 311–322. https://doi.org/10.1038/s41589-022-01178-1
- Geis-Asteggiante L., Lee A.E., Fenselau C. // Methods Enzymol. 2019. V. 626. P. 323–346. https://doi.org/10.1016/bs.mie.2019.06.025
- Jülg J., Edbauer D., Behrends C. // EMBO Rep. 2023. V. 24. P. e55895. https://doi.org/10.15252/embr.202255895
- Yau R.G., Doerner K., Castellanos E.R., Haakonsen D.L., Werner A., Wang N., Yang X.W., Martinez-Martin N., Matsumoto M.L., Dixit V.M., Rape M. // Cell. 2017. V. 171. P. 918–933.e20. https://doi.org/10.1016/j.cell.2017.09.040
- Deol K.K., Crowe S.O., Du J., Bisbee H.A., Guenette R.G., Strieter E.R. // Mol. Cell. 2020. V. 80. P. 796–809.e9. https://doi.org/10.1016/j.molcel.2020.10.017
- Waltho A., Sommer T. // Methods Mol. Biol. 2023. V. 2602. P. 19–38. https://doi.org/10.1007/978-1-0716-2859-1_2
- Lee A.E., Geis-Asteggiante L., Dixon E.K., Kim Y., Kashyap T.R., Wang Y., Fushman D., Fenselau C. // J. Mass Spectrom. 2016. V. 51. P. 315–321. https://doi.org/10.1002/jms.3759
- Crowe S.O., Rana A.S.J.B., Deol K.K., Ge Y., Strieter E.R. // Anal. Chem. 2017. V. 89. P. 4428–4434. https://doi.org/10.1021/acs.analchem.6b03675
- Sparks R.P., Fratti R. // Methods Mol. Biol. 2019. V. 1860. P. 191–198. https://doi.org/10.1007/978-1-4939-8760-3_11
- Song A., Hazlett Z., Abeykoon D., Dortch J., Dillon A., Curtiss J., Martinez S.B., Hill C.P., Yu C., Huang L., Fushman D., Cohen R.E., Yao T. // Elife. 2021. V. 10. P. e72798. https://doi.org/10.7554/eLife.72798
- Seger C. // Wien. Med. Wochenschr. 2012. V. 162. P. 499–504. https://doi.org/10.1007/s10354-012-0147-3
- Pluska L., Jarosch E., Zauber H., Kniss A., Waltho A., Bagola K., von Delbrück M., Löhr F., Schulman B.A., Selbach M., Dötsch V., Sommer T. // EMBO J. 2021. V. 40. P. e106094. https://doi.org/10.15252/embj.2020106094
- Ordureau A., Sarraf S.A., Duda D.M., Heo J.-M., Jedrychowski M.P., Sviderskiy V.O., Olszewski J.L., Koerber J.T., Xie T., Beausoleil S.A., Wells J.A., Gygi S.P., Schulman B.A., Harper J.W. // Mol. Cell. 2014. V. 56. P. 360–375. https://doi.org/10.1016/j.molcel.2014.09.007
- Durcan T.M., Tang M.Y., Pérusse J.R., Dashti E.A., Aguileta M.A., McLelland G.-L., Gros P., Shaler T.A., Faubert D., Coulombe B., Fon E.A. // EMBO J. 2014. V. 33. P. 2473–2491. https://doi.org/10.15252/embj.201489729
- Cunningham C.N., Baughman J.M., Phu L., Tea J.S., Yu C., Coons M., Kirkpatrick D.S., Bingol B., Corn J.E. // Nat. Cell Biol. 2015. V. 17. P. 160–169. https://doi.org/10.1038/ncb3097
- Kim W., Bennett E.J., Huttlin E.L., Guo A., Li J., Possemato A., Sowa M.E., Rad R., Rush J., Comb M.J., Harper J.W., Gygi S.P. // Mol. Cell. 2011. V. 44. P. 325– 340. https://doi.org/10.1016/j.molcel.2011.08.025
- Wagner S.A., Beli P., Weinert B.T., Nielsen M.L., Cox J., Mann M., Choudhary C. // Mol. Cell Proteomics. 2011. V. 10. P. M111.013284. https://doi.org/10.1074/mcp.M111.013284
- Elia A.E.H., Boardman A.P., Wang D.C., Huttlin E.L., Everley R.A., Dephoure N., Zhou C., Koren I., Gygi S.P., Elledge S.J. // Mol. Cell. 2015. V. 59. P. 867– 881. https://doi.org/10.1016/j.molcel.2015.05.006
- Akutsu M., Dikic I., Bremm A. // J. Cell Sci. 2016. V. 129. P. 875–880. https://doi.org/10.1242/jcs.183954
- Matsumoto M.L., Wickliffe K.E., Dong K.C., Yu C., Bosanac I., Bustos D., Phu L., Kirkpatrick D.S., Hymowitz S.G., Rape M., Kelley R.F., Dixit V.M. // Mol. Cell. 2010. V. 39. P. 477–484. https://doi.org/10.1016/j.molcel.2010.07.001
- Rana A.S.J.B., Ge Y., Strieter E.R. // J. Proteome Res. 2017. V. 16. P. 3363–3369. https://doi.org/10.1021/acs.jproteome.7b00381
- van Huizen M., Kikkert M. // Front. Cell Dev. Biol. 2020. V. 7. P. 1–8. https://doi.org/10.3389/fcell.2019.00392
- Qin Y., Zhou M.-T., Hu M.-M., Hu Y.-H., Zhang J., Guo L., Zhong B., Shu H.-B. // PLoS Pathog. 2014. V. 10. P. e1004358. https://doi.org/10.1371/journal.ppat.1004358
- Jin S., Tian S., Chen Y., Zhang C., Xie W., Xia X., Cui J., Wang R.-F. // EMBO J. 2016. V. 35. P. 866–880. https://doi.org/10.15252/embj.201593596
- Gatti M., Pinato S., Maiolica A., Rocchio F., Prato M.G., Aebersold R., Penengo L. // Cell Rep. 2015. V. 10. P. 226–238. https://doi.org/10.1016/j.celrep.2014.12.021
- Sparrer K.M.J., Gableske S., Zurenski M.A., Parker Z.M., Full F., Baumgart G.J., Kato J., Pacheco-Rodriguez G., Liang C., Pornillos O., Moss J., Vaughan M., Gack M.U. // Nat. Microbiol. 2017. V. 2. P. 1543–1557. https://doi.org/10.1038/s41564-017-0017-2
- Wang Q., Liu X., Cui Y., Tang Y., Chen W., Li S., Yu H., Pan Y., Wang C. // Immunity. 2014. V. 41. P. 919–933. https://doi.org/10.1016/j.immuni.2014.11.011
- Zhao C., Jia M., Song H., Yu Z., Wang W., Li Q., Zhang L., Zhao W., Cao X. // Cell Rep. 2017. V. 21. P. 1613–1623. https://doi.org/10.1016/j.celrep.2017.10.020
- Liu H., Li M., Song Y., Xu W. // Front. Immunol. 2018. V. 9. P. 2479. https://doi.org/10.3389/fimmu.2018.02479
- Xue B., Li H., Guo M., Wang J., Xu Y., Zou X., Deng R., Li G., Zhu H. // J. Virol. 2018. V. 92. P. e00321-18. https://doi.org/10.1128/JVI.00321-18
- Jin S., Tian S., Luo M., Xie W., Liu T., Duan T., Wu Y., Cui J. // Mol. Cell. 2017. V. 68. P. 308.e4–322.e4. https://doi.org/10.1016/j.molcel.2017.09.005
- He X., Zhu Y., Zhang Y., Geng Y., Gong J., Geng J., Zhang P., Zhang X., Liu N., Peng Y., Wang C., Wang Y., Liu X., Wan L., Gong F., Wei C., Zhong H. // EMBO J. 2019. V. 38. P. e100978. https://doi.org/10.15252/embj.2018100978
- Chen Y., Wang L., Jin J., Luan Y., Chen C., Li Y., Chu H., Wang X., Liao G., Yu Y., Teng H., Wang Y., Pan W., Fang L., Liao L., Jiang Z., Ge X., Li B., Wang P. // J. Exp. Med. 2017. V. 214. P. 991–1010. https://doi.org/10.1084/jem.20161387
- Sun H., Zhang Q., Jing Y.-Y., Zhang M., Wang H.-Y., Cai Z., Liuyu T., Zhang Z.-D., Xiong T.-C., Wu Y., Zhu Q.-Y., Yao J., Shu H.-B., Lin D., Zhong B. // Nat. Commun. 2017. V. 8. P. 15534. https://doi.org/10.1038/ncomms15534
- Imai J., Koganezawa Y., Tuzuki H., Ishikawa I., Sakai T. // Cell Biol. Int. 2019. V. 43. P. 1393–1406. https://doi.org/10.1002/cbin.11186
- Kristariyanto Y.A., Choi S.-Y., Rehman S.A.A., Ritorto M.S., Campbell D.G., Morrice N.A., Toth R., Kulathu Y. // Biochem. J. 2015. V. 467. P. 345–352. https://doi.org/10.1042/BJ20141502
- Michel M.A., Elliott P.R., Swatek K.N., Simicek M., Pruneda J.N., Wagstaff J.L., Freund S.M.V., Komander D. // Mol. Cell. 2015. V. 58. P. 95–109. https://doi.org/10.1016/j.molcel.2015.01.042
- Yu Z., Chen T., Li X., Yang M., Tang S., Zhu X., Gu Y., Su X., Xia M., Li W., Zhang X., Wang Q., Cao X., Wang J. // Elife. 2016. V. 5. P. e14087. https://doi.org/10.7554/eLife.14087
- Fei C., Li Z., Li C., Chen Y., Chen Z., He X., Mao L., Wang X., Zeng R., Li L. // Mol. Cell. Biol. 2013. V. 33. P. 4095–4105. https://doi.org/10.1128/MCB.00418-13
- Kristariyanto Y.A., Abdul Rehman S.A., Campbell D.G., Morrice N.A., Johnson C., Toth R., Kulathu Y. // Mol. Cell. 2015. V. 58. P. 83–94. https://doi.org/10.1016/j.molcel.2015.01.041
- Licchesi J.D.F., Mieszczanek J., Mevissen T.E.T., Rutherford T.J., Akutsu M., Virdee S., El Oualid F., Chin J.W., Ovaa H., Bienz M., Komander D. // Nat. Struct. Mol. Biol. 2011. V. 19. P. 62–71. https://doi.org/10.1038/nsmb.2169
- Mevissen T.E.T., Hospenthal M.K., Geurink P.P., Elliott P.R., Akutsu M., Arnaudo N., Ekkebus R., Kulathu Y., Wauer T., El Oualid F., Freund S.M.V., Ovaa H., Komander D. // Cell. 2013. V. 154. P. 169– 184. https://doi.org/10.1016/j.cell.2013.05.046
- Virdee S., Ye Y., Nguyen D.P., Komander D., Chin J.W. // Nat. Chem. Biol. 2010. V. 6. P. 750–757. https://doi.org/10.1038/nchembio.426
- Tran H., Hamada F., Schwarz-Romond T., Bienz M. // Genes Dev. 2008. V. 22. P. 528–542. https://doi.org/10.1101/gad.463208
- Besche H.C., Sha Z., Kukushkin N.V., Peth A., Hock E.-M., Kim W., Gygi S., Gutierrez J.A., Liao H., Dick L., Goldberg A.L. // EMBO J. 2014. V. 33. P. 1159– 1176. https://doi.org/10.1002/embj.201386906
- Jin J., Xie X., Xiao Y., Hu H., Zou Q., Cheng X., Sun S.-C. // Nat. Immunol. 2016. V. 17. P. 259–268. https://doi.org/10.1038/ni.3347
- Kim J.-B., Kim S.Y., Kim B.M., Lee H., Kim I., Yun J., Jo Y., Oh T., Jo Y., Chae H.-D., Shin D.Y. // J. Biol. Chem. 2013. V. 288. P. 12014–12021. https://doi.org/10.1074/jbc.M112.436113
- Yuan W.-C., Lee Y.-R., Lin S.-Y., Chang L.-Y., Tan Y.P., Hung C.-C., Kuo J.-C., Liu C.-H., Lin M.-Y., Xu M., Chen Z.J., Chen R.-H. // Mol. Cell. 2014. V. 54. P. 586–600. https://doi.org/10.1016/j.molcel.2014.03.035
- Kwon Y.T., Ciechanover A. // Trends Biochem. Sci. 2017. V. 42. P. 873–886. https://doi.org/10.1016/j.tibs.2017.09.002
- Sorada T., Morimoto D., Walinda E., Sugase K. // Biochem. Biophys. Res. Commun. 2021. V. 562. P. 94–99. https://doi.org/10.1016/j.bbrc.2021.05.031
- Pickart C.M., Fushman D. // Curr. Opin. Chem. Biol. 2004. V. 8. P. 610–616. https://doi.org/10.1016/j.cbpa.2004.09.009
- Yang W.-L., Wang J., Chan C.-H., Lee S.-W., Campos A.D., Lamothe B., Hur L., Grabiner B.C., Lin X., Darnay B.G., Lin H.-K. // Science. 2009. V. 325. P. 1134–1138. https://doi.org/10.1126/science.1175065
- Lim J., Yue Z. // Dev. Cell. 2015. V. 32. P. 491–501. https://doi.org/10.1016/j.devcel.2015.02.002
- Ohtake F., Tsuchiya H. // J. Biochem. 2017. V. 161. P. 125–133. https://doi.org/10.1093/jb/mvw088
- Swatek K.N., Komander D. // Cell Res. 2016. V. 26. P. 399–422. https://doi.org/10.1038/cr.2016.39
- Uckelmann M., Sixma T.K. // DNA Repair (Amst). 2017. V. 56. P. 92–101. https://doi.org/10.1016/j.dnarep.2017.06.011
- Nowsheen S., Aziz K., Aziz A., Deng M., Qin B., Luo K., Jeganathan K.B., Zhang H., Liu T., Yu J., Deng Y., Yuan J., Ding W., van Deursen J.M., Lou Z. // Nat. Cell Biol. 2018. V. 20. P. 455–464. https://doi.org/10.1038/s41556-018-0071-x
- Maspero E., Valentini E., Mari S., Cecatiello V., Soffientini P., Pasqualato S., Polo S. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 696–701. https://doi.org/10.1038/nsmb.2566
- Hospenthal M.K., Freund S.M.V., Komander D. // Nat. Struct. Mol. Biol. 2013. V. 20. P. 555–565. https://doi.org/10.1038/nsmb.2547
- Valkevich E.M., Sanchez N.A., Ge Y., Strieter E.R. // Biochemistry. 2014. V. 53. P. 4979–4989. https://doi.org/10.1021/bi5006305
- Paudel P., Banos C.M., Liu Y., Zhuang Z. // ACS Chem. Biol. 2023. V. 18. P. 837–847. https://doi.org/10.1021/acschembio.2c00898
- Wang Y.S., Wu K.P., Jiang H.K., Kurkute P., Chen R.H. // Molecules. 2020. V. 25. P. 5200. https://doi.org/10.3390/molecules25215200
- Ohtake F. // Trends Biochem Sci. 2020. V. 45. P. 820821. https://doi.org/10.1016/j.tibs.2020.04.008
- Sun M., Zhang X. // Cell Biosci. 2022. V. 12. P. 126. https://doi.org/10.1186/s13578-022-00870-y
- Di Meo A., Pasic M.D., Yousef G.M. // Oncotarget. 2016. V. 7. P. 52460–52474. https://doi.org/10.18632/oncotarget.8931
- Neagu A.N., Jayathirtha M., Baxter E., Donnelly M., Petre B.A., Darie C.C. // Molecules. 2022. V. 27. P. 2411. https://doi.org/10.3390/molecules27082411
- Singh G., Kumar S., Das R. // Anal Chem. 2023. V. 95. P. 10061–10067. https://doi.org/10.1021/acs.analchem.3c01425
Supplementary files
